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Abstract—Large-scale simulations are increasingly being used to study complex scientific and engineering phenomena. As a result,
advanced visualization and data analysis are also becoming an integral part of the scientific process. Often, a key step in extracting
insight from these large simulations involves the definition, extraction, and evaluation of features in the space and time coordinates
of the solution. However, in many applications these features involve a range of parameters and decisions that will affect the quality
and direction of the analysis. Examples include particular level sets of a specific scalar field, or local inequalities between derived
quantities. A critical step in the analysis is to understand how these arbitrary parameters/decisions impact the statistical properties of
the features, since such a characterization will help to evaluate the conclusions of the analysis as a whole.
We present a new topological framework that in a single pass extracts and encodes entire families of possible features definitions as
well as their statistical properties. For each time step we construct a hierarchical merge tree a highly compact, yet flexible feature
representation. While this data structure is more than two orders of magnitude smaller than the raw simulation data it allows us to
extract a set of feature for any given parameter selection in a post-processing step. Furthermore, we augment the trees with additional
attributes making it possible to gather a large number of useful global, local, as well as conditional statistic that would otherwise be
extremely difficult to compile. We also use this representation to create tracking graphs that describe the temporal evolution of the
features over time. Our system provides a linked-view interface to explore the time-evolution of the graph interactively alongside the
segmentation, thus making it possible to perform extensive data analysis in a very efficient manner. We demonstrate our framework
by extracting and analyzing burning cells from a large-scale turbulent combustion simulation. In particular, we show how the statistical
analysis enabled by our techniques provides new insight into the combustion process.

Index Terms—Topology, Morse Theory, Merge Trees, Segmentation, Streaming Algorithms, Combustion.

1 INTRODUCTION

High resolution numerical simulations have become an integral part of
the scientific process. They allow scientists to observe a range of phe-
nomena not easily captured by experiments and are an essential tool to
develop and validate new scientific theories. As the spatial and tem-
poral resolution of these simulations increases, so does the need for
efficient methods to visualize and analyze the resulting data. Tradi-
tionally, scientists use techniques such as isosurfaces [1, 2] to identify
features of interest and their defining parameters. These features are
then extracted and analyzed using a secondary tool chain. However,
after each change in parameters, such as isovalue, the entire data must
be re-processed, requiring significant time and computational effort.
Even using acceleration look-up structures, such as the span-space [3],
still requires access to the original simulation data for re-processing.
Relying directly on the original data renders interactive techniques in-
feasible as common data sets easily reach several Terabytes in size.

To improve data analysis and visualization capabilities for high-
resolution simulations, we propose a novel framework that uses pre-
computed topological information to enable interactive exploration of
large-scale data sets. We demonstrate the effectiveness of these tech-
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niques using simulations of a lean, pre-mixed hydrogen flame [4, 5].
These flames burn in a dynamic cellular mode that is characterized by
intensely burning cells separated by regions where the flame is extin-
guished. Burning cells are defined via a threshold on the fuel con-
sumption rate, and scientists are interested in the number, size, and
temporal evolution of these cells. However, no single correct thresh-
old is known, and studying the flame characteristics under different
thresholds is one of the primary goals.

In prior work [6], we used the Morse complex defined on an
isotherm (isosurface of temperature) to perform analysis over a wide
parameter range of fuel consumption thresholds and provided the abil-
ity to track burning regions over time. However, since the analysis was
performed on an extracted isotherm, it required specifying a tempera-
ture as an additional fixed parameter. In contrast, our new framework
is based on: (i) The merge tree of fuel consumption rate, computed
for the original three-dimensional data; (ii) The segmentation implied
by the merge tree; and (iii) Additional derived statistics of the result-
ing features. By storing the merge trees hierarchically, we encode all
possible cell segmentations in a single data structure, suitable for both
three-dimensional and two-dimensional data. This data structure is
two orders of magnitude smaller than the input, making it possible
to explore interactively an entire family of features along with aggre-
gate attributes, such as cell volume or average fuel consumption using
pre-computed topological information. We also implement tracking of
burning regions over time.

Splitting segmentation information from the hierarchical merge
trees, we create a lightweight index into the pre-segmented data that
can be loaded on demand, thus enabling interactive analysis. A linked-
view system uses this index to correlate the tracking graph with dis-
plays of segmentations supporting interactive exploration of their tem-
poral evolution. Using pre-computed attributes, such as cell volume or
average fuel consumption, it is possible to sub-select cells and explore
the 3D segmentation interactively. Based on these subsets, we aggre-
gate pre-computed statistics for quantitative analysis. Thus, topolog-
ical analysis allows one to fully explore the parameter space used for
segmenting, selecting, and tracking burning cells as defined by the do-
main scientists. Furthermore, we demonstrate that the high level of
abstraction of the topological representation, which reduces data by
more than two orders of magnitude, does not impact adversely the
functionality in the data exploration process. In particular, one can ex-
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plore all possible segmentations of burning cells to understand better
their dynamics as well as to validate the method. Finally, we demon-
strate that the topological data representation is ideally suited for per-
forming extensive data analysis by providing a compact, yet complete
representation of features of interest.

We have tested and validated our techniques extensively by process-
ing more than 8 Terabytes of raw data. In collaboration with applica-
tion scientists we are actively using the system to form new hypotheses
about the burning process. In particular, scientists have found that our
technique can facilitate understanding relationships between the size
distribution of burning cells, the threshold of fuel consumption and
turbulent intensity. We have found that streaming merge tree segmen-
tation is highly flexible with respect to the input and works on any grid
type. Since it needs no temporary data, it also supports on-the-fly sim-
plification as well as culling (i.e., dropping points before processing).

In summary, our contributions to the state of the art of visualization
and data analysis are:

• A novel streaming algorithm for computing merge trees related
to the streaming Reeb graph computation algorithm introduced by
Pascucci et al. [7]. Our new approach overcomes the unfavorable
scaling in three dimensions, computes the corresponding segmen-
tation on the fly, and works for any grid type.

• Computing tracking graphs correlating segmentations over time for
user-specified thresholds.

• Augmenting the merge tree with pre-computed attributes such as
average fuel consumption rate or burning cell volume.

• Utilizing merge trees for data compression enabling interactive
analysis of ultra-scale simulations on desktop workstation or lap-
top computers. In particular, the merge trees serve as a very light
weight index into the pre-segmented data that can be loaded inter-
actively on demand for each parameter selection.

• A linked-view interface for exploring the relationship between data
segmentation and tracking graph for the features of interest. This
system further utilizes pre-computed attributes such as cell volume
to support high-level filtering operations on the segmentation.

• Aggregating pre-computed attributes into comprehensive statistics
based on filtering criteria chosen in the linked-view system. This
feedback is essential for validation of the system.

• Demonstrating the applicability of our system by performing a full
3D analysis on state of the art, large scale combustion simulations.
This application shows that our topological analysis supports broad
exploration of the parameter space used for segmenting, selecting,
and tracking burning regions as defined by the domain scientists
thus validating the effectiveness of our tool. In particular, users
have found our technique to be critical in gaining new insight in
the dynamics of the combustion process such as in the understand-
ing the relationship of the size distribution of burning cells and the
threshold of fuel consumption rate.

2 RELATED WORK

Fundamentally, our work addresses the definition, analysis, and track-
ing of features. In flow and vector field visualization, feature extrac-
tion and tracking are still an open topic and the subject of ongoing
research [8]. Our work, however, focuses on scalar field exploration,
where a variety of basic feature definitions have proven valuable and
successful. Isosurfaces [1, 2], interval volumes [9], or thresholding
combinations of various scalar quantities [10, 11] often serve as the
building blocks for defining features of interest. The resulting struc-
tures provide an abstract visualization tool and often have concrete
physical interpretations. For example, in combustion simulations, iso-
surfaces of temperature are often equated with flame surfaces.

Defining and extracting features usually serves the purpose of deriv-
ing quantitative measurements, tracking those features of interest over
time or both. For scalar data, most feature definitions are based on iso-
surfaces or thresholded regions. Mascarenhas and Snoeyink [12] pro-
vide a detailed overview of isosurface tracking. Essentially, tracking
algorithms can be divided into two main categories: tracking by ge-
ometry and tracking by topology. Methods in the former category use

distance between geometric attributes, e.g., the center of gravity [13]
or volume overlap [14, 15], for tracking. Laney et al. [16] use a similar
approach to track bubble structures mentioned in the feature detection
section in turbulent mixing. Ji et al. [17, 18] track the evolution of iso-
surfaces in a time-dependent volume by extracting the 3D space-time
isosurface in a 4D space. Finally, Weber et al. [19] creating track-
ing graphs for features embedded into time-dependent iso-surfaces by
computing the Reeb graph of the space-time surface defined by feature
boundaries.

Methods in the latter category [20, 21] compute tracking informa-
tion topologically using, for example, Jacobi sets [22], which describe
the paths all critical points take over time. Sohn and Bajaj [23] intro-
duce a hybrid approach using volume matching similar to Silver and
Wang [14, 15] instead of topological information [22, 21] to define
correspondences between contour trees.

The application of such feature definitions to large scale data is
hampered by the need for multiple static thresholds. A single set of
features is extracted for each set of thresholds, and any change in a
threshold requires re-processing of data. This approach makes visu-
alization of features with variable thresholds difficult and the corre-
sponding data analysis costly. Topological techniques [24] address
this problem by expressing a similar set of features using concepts of
Morse theory [25, 26]. Furthermore, Morse theory provides a well de-
veloped notion of simplification and hierarchical structures. This no-
tion makes feature definitions hierarchical supporting noise removal
and multi-scale analysis.

Features of interest may be defined using the Reeb graph [27, 7], the
contour tree [28, 29, 30, 31, 32, 33] as well as the related volume skele-
ton tree [34, 35]) and the Morse-Smale complex [36, 37, 38, 39, 40].
For example, Carr et al. show the benefit of using individual con-
nected components of an isosurface [41] and further show that contour
tree simplification can pick up anatomical structures [42]. Weber et
al. [43] use the same concept to segment medical and simulation data
for volume rendering. Further examples of topological data analysis
include using the Morse-Smale complex to detect bubbles in turbulent
mixing [16] or the core structure of porous solids [44]. Takahashi et
al. [45] introduce new distance metrics to manifold learning that sup-
port recasting contour tree calculation as a dimensionality reduction
scheme. While this approach makes it possible to reduce data set sizes
and segment data, it does not compute an explicit graph representation
of the contour necessary for associating the tree structure with quanti-
tative measurements.

Recently, we have used topological techniques to analyze extinction
regions in non-premixed turbulent combustions [46] and to study lean
pre-mixed hydrogen flames [6, 19]. Similar to [46] we use hierarchical
merge trees to encode one-parameter families of segmentations. How-
ever, we extend the trees by associating additional attributes with the
segmentation and use a different hierarchy construction as well. Their
method also lacks the ability to visualize, let alone explore, resulting
tracking graphs. Furthermore, unlike [46] we show how the result-
ing information can be used to represent compactly the features of
interest for an entire simulation and demonstrate an interactive explo-
ration framework based on this representation. In [6, 19] we analyze
lean pre-mixed hydrogen flames considered to be an idealized, sim-
pler version of the low-swirl flames that are the focus here. However,
the analysis in [6] requires the use of an arbitrary isosurface, which
can bias the results and makes feature tracking significantly more dif-
ficult [19]. Instead, we extend the analysis of [6] to three-dimensions
removing the bias and add the ability to explore the entire simula-
tion interactively. By performing a three-dimensional segmentation
directly, feature tracking also becomes simpler, (see Section 5.3) elim-
inating the need for more advanced tracking techniques. Recently, we
published preliminary findings focusing on the combustion applica-
tion [47]. Here, we present an in-depth description of the novel algo-
rithms used in that study as well as new, further substantiated analysis
results.

An important aspect of our system is that it correlates tracking
graphs and segmented views via linking. Linking multiple views for
the visualization of high-dimensional data sets is an established con-
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(a) (b) (c) (d) (e)

Fig. 1. (a) Photo of a typical laboratory low-swirl nozzle. (b) Photo of a lean premixed CH4 low-swirl flame. (c) Experimental Mie scattering image
of a lean premixed H2 flame. (d) PLIF data imaging the OH concentration in a lean premixed H2 flame. (e) Rendering of the burning cells of the
SwirlH2 simulation data. The cells form a bowl shaped structure with the arrow indicating the direction of the fuel stream.

cept in information visualization [48]. For example, Henze [49] pro-
posed a system for exploring time-varying computational fluid dynam-
ics (CFD) data sets that uses multiple views (called Portraits in the pa-
per) displaying a data set and various derived quantities. Users can per-
form advanced queries by selecting data subsets in these portraits. The
concept of multiple views was also used in the WEAVE system, where
a combination of physical views and information visualization views
allows exploration of cardiac simulation and measurement data [50].
Doleisch et al. [51] generalize this concept with abstract feature def-
initions based on thresholds and linking physical views and informa-
tion visualization views to facilitate data exploration. In the context
of topological data analysis, Fujishiro et al. [52] introduced the T-Map
that captures the topological structure of a 4D volume, shows topo-
logical changes in pixel map form, and supports effective drill-down
operations. For example, their system supports highlighting regions
identified in the T-Map in volume rendered images of the original time
sequence data.

3 APPLICATION

Improving our ability to interpret diagnostics of complex, experimen-
tally observable phenomena is an important application of modern
large-scale numerical simulations. We explore this issue in the context
of combustion, where detailed simulations are used to support the fun-
damental basis behind the interpretation of critical laser-based flame
diagnostic approaches. For a detailed discussion on basic combus-
tion theory we refer the reader to the book by Williams [53] and for
the theory and numerical modeling of flames including turbulence to
Poinsot and Veynante [54]. We focus this study on advanced ultra-lean
premixed combustion systems, see Bell et al. [55] for a discussion of
recent research in simulation of lean premixed combustion, and our
ultimate goal is to: (i) Augment and validate laser-based diagnostics;
(ii) Assess the underlying assumptions in their interpretation; and (iii)
Aid the development of models to characterize the salient behavior of
these flame systems.

Low-swirl injectors [4, 56, 5, 57, 58] are emerging as an impor-
tant new combustion technology. In particular, such devices can sup-
port a lean hydrogen-air flame that has the potential to dramatically
reduce pollutant emissions in transportation systems and turbines de-
signed for stationary power generation. However, hydrogen flames are
highly susceptible to various fluid-dynamical and combustion instabil-
ities, making them difficult to design and optimize. Due to these in-
stabilities, the flame tends to arrange itself naturally in localized cells
of intense burning that are separated by regions of complete flame ex-
tinction.

Existing approaches to analyze the dynamics of flames, including
most standard experimental diagnostic techniques, assume that the
flame is a connected interface that separates the cold fuel from hot
combustion products. In cellular hydrogen-air flames, many of the ba-
sic definitions break down—there is no connected interface between
the fuel and products, and in fact there is no concrete notion of a
“progress variable” that can be used to normalize the progress of the
combustion reactions through the flame. As a consequence, develop-
ment of models for cellular flames requires a new paradigm of flame
analysis.

Fig. 1(a) shows the detail of a low-swirl nozzle. The annular

vanes inside the nozzle throat generate a swirling component in the
fuel stream. Above the nozzle the resulting flow-divergence provides
a quasi-steady aerodynamic mechanism to anchor a turbulent flame.
Fig. 1(b) illustrates such a flame for a lean premixed CH4-air mix-
ture (the illustration shows a methane flame since H2 flames do not
emit light in the visible spectrum). Figs. 1(c),1(d) show typical exper-
imental data from laboratory low-swirl, lean H2-air flames. Such data
is used to extract the mean location and geometrical structure of in-
stantaneous flame profiles. The images indicate highly wrinkled flame
surfaces that respond in a complex way to turbulent structures and cel-
lular patterns in the inlet flow-field.

In earlier studies, we presented a novel approach for a generalized
analysis of cellular flames. The method was based on tracking time-
dependent isotherms. A hierarchical segmentation strategy was used
to carve the isotherms into connected flame pieces based on local rates
of fuel consumption. These flame pieces were then tracked over the
numerical evolution of the flow. For a given set of conditions, the size
and intensity of the individual burning cells were computed and used
to characterize directly the effects of turbulence. In the present study,
we generalize the previous work to avoid the initial step of interpo-
lating the quantity of actual interest (the rate of fuel consumption) to
a convenient scalar isosurface. The cellular regions of intense burn-
ing are identified by thresholding the local consumption rate and we
work directly with the resulting three-dimensional, time-dependent re-
gions. The process may be regarded as a generalized subsetting strat-
egy, whereby subregions of a computational result may be sampled,
explored and categorized in terms of a volume of space with an arbi-
trary application-specific definition for its boundary. Since we are in-
terested in regions of high fuel consumption we have identified merge
trees which encode the topology of super-level sets, see Section 4, as
appropriate data structure. Nevertheless, the same techniques would
apply to split trees in cases where minima are of interest or with some
extensions to contour trees which encode features of both high and low
function values.

The computational model used to generate the simulation results ex-
plored in this study incorporates a detailed description of the chemical
kinetics and molecular transport, thus enabling a detailed investigation
of the interaction between the turbulent flow field and the combustion
chemistry. The simulation was carried out using a parallel adaptive
low Mach number combustion code LMC [59] with an INCITE grant
for computational resources at the National Energy Research Scien-
tific Computing (NERSC) Center. The combination of adaptive mesh
refinement, a low Mach number model formulation and the computa-
tional resources available through INCITE enabled us to perform these
simulations in a 25 cm3 domain with an effective resolution of 20483.
Results from the simulation are in the form of a sequence of snapshots
in time of the state data. Each snapshot is arranged in a hierarchy
of block-structured grid patches ordered by refinement level and tiling
successively smaller regions of the domain with successively finer grid
cells. The highest resolution is focused around the flame surface (or,
region of high fuel consumption) and regions of high vorticity, and the
adaptive hierarchy of grid patches evolves with the time-dependent
solution. As in the physical device, the low-swirl burner simulation
achieves a statistically stationary flame in a time-dependent turbulent
flow field above the inlet nozzle.
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Fig. 2. (a)-(d) Constructing a merge tree and corresponding segmentation by recording the merging of contours as the function value is swept
top-to-bottom through the function range. (e) The segmentation for a particular threshold can be constructed by cutting the merge tree at the
threshold, ignoring all pieces below the threshold and treating each remaining (sub-)tree as a cell. (f) The segmentation of (e) constructed by
simplifying all saddles above the threshold. (g) The merge tree of (d) augmented by splitting all arcs spanning more than a given range.

We consider two simulations, which we label SwirlH2 and
SwirlH2Fast, respectively, having different flow profiles. The
SwirlH2Fast case has a mean fueling rate of 2.5 times that of the
SwirlH2 case. In the simulations, the time-dependent integrated in-
ventory of fuel in the domain is used to monitor the developing flame.
Auxiliary diagnostic quantities, such as local chemical production rate,
thermodynamical properties, etc. are computed from the state, as nec-
essary. Once a quasi-steady configuration is obtained, snapshots were
collected at intervals of approximately 2ms and 1ms for SwirlH2 and
SwirlH2Fast, respectively and used for the analysis here. The data sets
consist of 332 and 284 snapshots for the slow and fast version, respec-
tively, at an effective resolution of 10243. The resulting snapshots are
roughly 12–20 Gigabytes in size totaling a combined 8.4 Terabytes of
raw data. The main features of interest are the intensely burning cells
defined by a threshold on the local fuel consumption rate. All regions
with a local fuel consumption rate above this threshold are tagged as
“burning.” Note, however, that no single “correct” threshold exists,
requiring that we characterize the influence of this threshold value on
the resulting diagnostics.

4 BACKGROUND

Many of the data structures and algorithms used in this paper are
rooted in Morse theory [25, 26]. In particular, we use hierarchical
merge trees as primary data structure and here we briefly review the
necessary theoretical background.

4.1 Hierarchical Merge Trees
First, we recapitulate the definitions of hierarchical merge trees, their
connection to previously used structures such as the Morse com-
plex [6], and how they can be used to store one-parameter families of
segmentations. The concepts and data structures used here are similar
to those used previously for studying extinction regions [46]. How-
ever, as discussed below we use a different algorithm and hierarchy.
Furthermore, we augment the merge trees with additional attributes.

Given a smooth simply connected manifold M⊂R
n and a function

f : M → R the level set L(s) of f at isovalue s is defined as the col-
lection of all points on R with function value equal to s: L(s) = {p ∈
M| f (p) = s}. A connected component of a level set is called a con-
tour. Similarly, we define super-level sets LS(s) = {p ∈M| f (p)≥ s}
as the collection of points with function value greater or equal to s
and super-contours as their connected components. The merge tree of
f represents the merging of super-contours as the isovalue s is swept
top-to-bottom through the range of f , see Fig. 2(a). Each time the iso-
value passes a maximum a new super-contour is created and a new leaf
appears in the tree. As the function value is lowered super-contours
merge represented in the tree as the joining of two branches. Departing
slightly from standard Morse theory we will call a point p in a merge
tree regular if it has valence two and critical otherwise. Note that,
this definition of critical points ignores points at which contours split
or change genus and local minima as these do not affect the structure
of a merge tree. Consequently, there exist only three types of critical
points: maxima with no higher neighbors, saddles with two or more
higher neighbors, and the global minimum with no lower neighbors.

Each branch in the merge tree corresponds to a neighboring set of
contours and therefore branches represent subsets of M. Here, we are

interested in regions of high fuel-consumption rate and use sub-trees
above a given threshold to define burning cells. Given a threshold,
t, for the fuel consumption rate, f , we determine the corresponding
burning cells by (conceptually) cutting the merge tree of f at t cre-
ating a forest of trees. Each individual tree represents one connected
burning cell, see Fig. 2(e). In practice, rather than cutting the merge
tree and traversing sub-trees the same information is stored more ef-
ficiently as a simplification sequence. A merge tree is simplified by
successively merging leaf branches with their sibling branch. We or-
der these simplifications by decreasing function value of the merge
saddles and store the resulting simplification sequence. In this frame-
work burning cells at threshold t are defined as sets of all leaf branches
with function value greater than or equal to t of the tree simplified to
t, see Figure 2(f).

Alternatively, this simplification can be viewed as the function
value based simplification of maxima in the corresponding Morse
complex [6]. In this context, the leaf branches above threshold t cor-
respond to the stable manifolds of the Morse complex above t after
canceling all saddles with function value ≥ t with neighboring max-
ima. However, the Morse complex used previously [6], by definition
encodes a gradient based segmentation rather than a threshold-based
one. Thus, the Morse complex needs a secondary data structure within
each Morse cell to encode the segmentation while the merge tree nat-
urally provides this information. Furthermore, as discussed below,
the merge tree can be computed significantly more efficiently than
the Morse complex making it the data structure of choice for three-
dimensional data.

4.2 Augmented Merge Trees
Storing only the merge tree, the scheme described above allows us
to determine the number of burning cells for all possible thresholds.
However, in practice we also need an accurate representation of cell
geometry and of any number of additional attributes such as volume
(see below). Using only the original segmentation this is difficult since
we must exclude the lower portions of branches intersecting the thresh-
old. As the distribution of branch attributes can, in general, not be
predicted, excluding a portion of a branch would require us to access
the original data at significant cost. Instead, we extend the concepts
introduced in [46] to augment the merge tree with additional valence
two nodes by splitting all branches longer than some threshold, as seen
in Fig. 2(g). Furthermore, unlike [46] we also compute a number of
additional attributes for each branch. For example, we compute the
volume of each branch as well as a number of k-th order moments
such as means and variances for any variable of interest (not neces-
sarily just f ), see Section 5. As discussed below, this splitting is per-
formed with little overhead during the initial computation and allows
us to approximate cutting at any threshold with a pre-defined accuracy.
It is important to note that this approximation only affects the geome-
try of the segments and their attributes but not their structure. We are
guaranteed to not erroneously merge or split cells due to the approx-
imation. In particular, augmenting the merge tree in this manner is a
significant improvement over the regular sampling grid used in [6] that
stores area values for all Morse complex cells for the entire function
range independent of the local function range within that cell.

The augmented merge trees form the fundamental data structure in
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Fig. 3. Streaming merge tree construction: (a) Intermediate merge tree with the zoom-in showing the pointers used to maintain the data structure
in red. Each vertex stores a pointer to its sibling, creating a linked list, as well as a pointer to one of its parents and a pointer to its child; (b) Merge
tree of (a) after the addition of a new vertex; (c) The tree of (b) after attaching the lonely vertex with an edge; (d) Adding the dotted edge from u
to v does not change the merge tree as v is already a descendant of u; (e) Adding the dotted edge from u to v creates a (temporary) loop which is
immediately closed by merging the sub-branches w−m and v−m. This creates a new saddle at v and changes m to a regular vertex shown in (f);
(g) A branch decomposition of the tree in (f). (h) The branch decomposition of (g) where each branch stores a balanced search tree of its vertices.

our framework, storing the one-parameter family of possible segmen-
tations along with an arbitrary number of attributes. For efficient ac-
cess during the visualization we store the segmentation information, a
list of vertices per cell, separately. Even for the largest data sets the re-
sulting merge trees consist of only around 6Mb ASCII information per
time step compared to several Gigabytes of raw data. In fact, the trees
are small enough to be loaded interactively from disk, see Section 6.

5 DATA PROCESSING

A key advantage of our system is the ability to represent more than a
single static segmentation. Instead, we allow the user to browse the
one-parameter family of all possible segmentations interactively. Fur-
thermore, we provide various conditional attributes alongside the pri-
mary segmentation. This flexibility is based on computing hierarchical
merge trees representing all possible segmentations and augmenting
them with conditional information. The resulting data structure forms
a highly flexible meta-segmentation that we use for visualization as
well as data analysis. This section discusses the different algorithms
and data structures used for processing individual time steps as well as
constructing global tracking graphs.

5.1 Streaming Merge Tree Construction
We compute the augmented merge trees in a streaming fashion. The
algorithm is similar in spirit to the one presented in [7] adapted to
merge trees and improved to avoid the poor scaling for volumetric
data. In general, streaming algorithms are attractive for large scale
data processing due to their low memory foot print, high performance,
and their ability to avoid temporary files and also to reduce file I/O.
The streaming merge tree algorithm presented here provides several
additional advantages. By representing the input data as a stream of
vertices and edges it naturally supports culling of vertices outside a
given function range of interest (in this case very low function values
for example). Furthermore, we can perform an on-the-fly simplifi-
cation that significantly reduces the size of the merge trees. Finally,
a streaming approach is more flexible with respect to input formats
and interpolation schemes. For example, as discussed in Section 7,
processing data in its native adaptive mesh refinement (AMR) format
provides a significant performance increase. We assume our input con-
sists of a stream of vertices, edges between vertices, and finalization
flags, where a vertex v must appear before the first edge that references
v and the finalization tag of v appears after the last edge that uses v.

Algorithm. In the following discussion we use the nomenclature
of vertices and links for the dynamically changing merge tree and
nodes and arcs for elements of the final tree, which for distinction
we will call merge graph. Note that vertices of the dynamic merge
tree have a natural one-to-one correspondence to vertices of the in-
put stream. The algorithm is based on three atomic operations corre-
sponding to the three input elements: CreateVertex is called each time
a vertex appears in the input stream; AddEdge is called for each edge
in the input; and FinalizeVertex is called for each finalization flag. We
illustrate the algorithm using the examples shown in Fig. 3. At all
times we maintain a merge tree consisting of all (unfinalized) vertices

seen so far. Each vertex stores its links using three pointers: A down
pointer to its (unique) lower vertex; An up pointer to one of its higher
vertices; and A next pointer to one of its siblings, see Fig. 3(a). The
up and next pointers form a linked list of higher vertices allowing to
completely traverse the tree. CreateVertex creates a new isolated ver-
tex, see Fig. 3(b). AddEdge connects two vertices (u,v) of the exist-
ing tree and wlg. we assume f (u) > f (v). With respect to the merge
tree structure, each edge (u,v) provides one key piece of information
about f : The existence of (u,v) guarantees that u’s contour at f (u)
must evolve (potentially through merging) into v’s contour at f (v) and
thus v must be a descendant of u in the tree. In the following we check
this descendant property and if necessary adapt the merge tree to en-
sure its validity. First, we find the lowest descendant w of u such that
f (w) ≥ f (v). If w = v then the current tree already fulfills the de-
scendant property and it remains unchanged , see Figs. 3(c) and 3(d).
However, if w �= v the current tree does not fulfill the descendant prop-
erty and must be modified. Another indication of this violation is that
adding the new edge to the tree would create a loop which cannot ex-
ist in a merge tree, see Fig. 3(e). To restore a correct merge tree that
reflects the new descendant information we perform a merge sort of
both branches starting at w and v respectively until we find the first
common descendant m of u and v, see Fig. 3(f). In this merge sort
step, all other branches originating from a saddle are preserved. The
merge sort closes the (illegal) loop and creates the correct merge tree.
The pseudo code of the AddEdge algorithm is shown in Fig. 4.

ADDEDGE(Vertex u, Vertex v, MergeTree T , Function f )
if f (u)< f (v)

SWAP(u,v)
endif
w = u
while f(T .GETCHILD(w)) ≥ f(v) // Find the lowest child w

w = T .GETCHILD(w) // of u such that f (w)≥ f (v)
endwhile
if w �= v // If v is not a direct descendant of u

T .MERGESORT(w,v) // Close the loop w,v,m (see Fig, 3(e))
endif

Fig. 4. Pseudo-code for the AddEdge function to update a merge tree T
to include the edge (u,v)

As vertices become finalized we remove them from the tree. How-
ever, care must be taken that this early removal does not impact the
outcome of the computation. For example, a finalized saddle may be-
come regular through global changes in the tree, see below. In partic-
ular, critical points of the merge tree must be preserved as they may
form the nodes of the merge graph. In this context it is important to
understand how the local neighborhood of a vertex relates to it being
critical (wrt. to the merge tree, see Section 4). Here, we are inter-
ested in the connected components of the upper link [36] of a vertex
v. Here the upper-link is defined as all vertices vi connected to v with
f (vi)> f (v) and the edges between them. By definition, a saddle must
have more than one component in its upper link, while the upper link of
the global minimum is a topological sphere of dimension n−1. How-
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ever, the reverse is not true: A vertex can have multiple components in
its upper link yet not be a (merge-tree) saddle (its upper link compo-
nent may belong to contours that merged earlier); Similarly, the upper
link of a local minimum is a topological sphere yet it is not critical
with respect to the merge tree. This relationship becomes important
when deciding which finalized vertices can be removed safely.

Finalizing a vertex v indicates that its entire local neighborhood has
been processed. Thus, a finalized regular vertex will remain regular
as more edges are added and can be removed without impacting the
tree. Similarly, a finalized maximum will remain a leaf of the tree and
thus will always correspond to a node of the merge graph. A finalized
saddle, however, may become regular as its branches can be merged
through additional edges not incident to the vertex itself. Finally, the
global minimum of all vertices seen so far may become regular or
a saddle when further vertices or edges are added. Nevertheless, a
branch of the merge tree which consists only of a finalized leaf and
a finalized saddle/minimum is guaranteed to be an arc of the merge
graph (none of the contours it represents can be changed anymore).
These conditions result in the algorithm shown in Fig. 5. When fi-
nalizing a vertex v we first check whether it is a regular vertex and if
so remove it from the tree. We then determine whether this finaliza-
tion has created a leaf edge between two finalized critical vertices. All
such edges must be arcs in the merge graph and are added alongside
their nodes. This procedure peels finalized branches from top to bot-
tom from the merge tree and adds them to the merge graph. Finally,
we check whether only the global minimum is left and remove it if
necessary.

FINALIZEVERTEX(Vertex v, MergeTree T , MergeGraph Final)
T .MARKASFINALIZED(v)
c = T .GETCHILD(v)
if T .ISREGULAR(v)

T .BYPASSVERTEX(v) // Link all parents of v to its child c
T .REMOVEVERTEX(v)

endif
if T .ISCRITICAL(c) AND T .ISFINALIZED(c)

forall p ∈ T .GETPARENTS(c)
if T .ISCRITICAL(p) AND T .ISFINALIZED(p)

AND T .GETPARENTS(p) == /0
Final.ADDARC(c, p)
T .REMOVEEDGE(c, p)
T .REMOVEVERTEX(p)

endif
endfor
if T .GETCHILD(c) == /0 AND T .GETPARENTS(c) == /0

T .REMOVEVERTEX(c)
endif

endif

Fig. 5. Pseudo-code for the FinalizeVertex function to update a merge
tree T after finalizing vertex v.

Optimization As described above, the algorithm can be seen as
an optimized version of the one in [7]. By specializing the basic con-
cept for merge trees one no longer needs to keep track of the interior
of triangles (they do not influence the merging of contours) nor does
one need to maintain loops in the graph as, by definition, merge trees
cannot contain loops (independent of the genus of their input domain).
However, applying this basic scheme to large scale three-dimensional
data reveals a fundamental flaw in the original algorithm.

For each edge (u,v) we must find u’s lowest descendant above v we
call w. This requires us to traverse all vertices part of u’s contour as
we sweep through the range [ f (u), f (w)]. Implemented in a straight-
forward fashion as shown in Fig. 4, this traversal takes time linear in
the size of the contour and thus resulting in a worst-case time complex-
ity of O(#edges∗#vertices). For triangulated surfaces with n vertices
the expected number of edges is 3n and the expected size of a level set

is O(n
1
2 ) [30] making the streaming Reeb graph algorithm scale virtu-

ally linearly for surfaces. For volumes, however, the expected size of

a level set increases to O(n
2
3 ) which significantly impacts the scaling

observed in practice. Furthermore, when combined with an expected
12n edges and the larger overall number of vertices the observed per-
formance of the original algorithm decreases dramatically for higher
dimensions.

To address this issue, we propose to rearrange the dynamic merge
trees into a branch decomposition [60] and to maintain a balanced
search tree for each branch, see Fig. 3(g). Clearly, in the new data
structure the search for w takes time logarithmic in the size of the con-

tour resulting in an expected search complexity of O(n log(n
d−1

d )) for
dimension d. To maintain the search structure, the time complexity
to add and finalize a vertex increases to log(b) where b is the size
of the branch. Furthermore, the merge sort increases in complexity
from O(b) to O(b logb) since vertices must be removed and added to
the search structure. Thus, a conservative upper bound on the worst-
case time complexity of the new algorithm is O(n2 logn). However,
in practice, we find that the search for w is by far the most common
(and expensive) operation and merge sorts typically handle very short
segments of branches making the improved algorithm orders of mag-
nitude faster than the naive implementation described above.

The new algorithm maintains all the flexibility of the streaming
Reeb graph algorithm without the associated performance penalties.
In particular, unlike the algorithm used in [46] we do not rely on regu-
lar grids as inputs nor do we need to pre-sort the data. As discussed in
Section 7, extracting a regular subset of data from the given AMR for-
mat is far more expensive than the merge tree computation itself and
its cost as well as its temporary storage can be avoided entirely using
the streaming approach.

Vertex Connectivity Another important aspect when comput-
ing merge trees is the choice of triangulation or more generally the
choice of neighborhood for each vertex. Traditionally, a volumet-
ric grid would be tetrahedralized using the standard one-to-six voxel-
tetrahedra split. However, this approach implies node-centered data
and linear interpolation between nodes. In our specific application
the data is cell centered and piece-wise constant. While it is easy to
treat cells implicitly as nodes, imposing linear interpolation distorts
the data. In particular, using a tetrahedralization introduces a grid bias
where certain cells connected via their corners are considered neigh-
bors (and have an edge between them) while others are not. We resolve
this inconsistency by using the full 26-neighborhood around a cell
when creating edges. While this connectivity no longer corresponds to
any particular interpolation scheme (which it should not as the data is
simulated to be piece-wise constant) it preserves the intuitive condition
that two neighboring cells cannot both be local maxima. For a more
rigorous argument of why this choice is appropriate we refer the reader
to Carr and Snoeyink [61] who among other things show that choosing
the 26-neighborhood is equivalent to a particular choice of marching
cubes case tables. Nevertheless, as all our algorithms take an arbitrary
set of edges as input we can switch easily to any other definition of
neighborhood, e.g., tetrahedral or 6/12-neighborhood, depending on
the application.

5.2 Segmentation
We compute the segmentation in a two stage approach: The first pass
stores a pre-segmentation, which is completed in a second pass. Dur-
ing the initial merge tree computation we create a new segment each
time a critical point is created and identify the segment with the mesh
index of the corresponding vertex. As we traverse the tree during
merge operations we pass on these labels from parent to child avoiding
virtually any computational overhead. As a result, each vertex knows
its current representative (its next highest critical points), see Fig. 6(a).
Maintaining the representatives is akin to a union-find except that sets
can split. Since the notion of a representative is global (potentially the
representative for all vertices can change at once) yet labels are up-
dated only during merge sorts some labels may not be correct at any
given time, see Fig. 6. In particular, the representative of a vertex v
can change in two ways: v’s initial representative u may become a
regular vertex with representative w thus ceasing to be considered a
representative, see Fig. 6(b). This corresponds to a union of the ver-
tices with representative u with those of representative w. Conversely,
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a new saddle s may been created below u, see Fig. 6(c), which cor-
responds to splitting the set of vertices with representative u into two
pieces. In the first case, u must have been part of the merge and thus
stores the label of its correct representative w which has also become
v’s representative. In the second case, v’s correct representative s can
be found as the last saddle below u and above v. In general, there can
exist any number of combinations of these two cases (see Fig. 6(b-d))
that cause labels to be out-dated. In particular, labels can be incor-
rect at the time a vertex is finalized and removed from memory. In this
case we simply store its current label which we will correct in a second
pass. It is important to point out that the representative of v can change
after v has been finalized (and written to disk). Thus even correcting
the labels during finalization would not protect against incorrect labels
being recorded initially. Nevertheless, in practice labels are updated
quite regularly and thus the pre-segmentation represents a good initial
guess for the correct segmentation.

(a) (b) (c) (d) (e)

Fig. 6. Two-pass segmentation corresponding to a merge tree with crit-
ical points colored according to the branches they represent: (a) An
initial tree segmented into branches indicated by color; (b) Adding the
dotted edge shown in (a) results in a partial merge of branches causing
the blue saddle u to become regular and a new green saddle w to ap-
pear; (c),(d) Adding further edges creates and destroys additional criti-
cal points as well as the corresponding segments. Note that labels are
updated only as a side-effect of necessary merge-sorts and thus incur
virtually no additional computational cost; (d) Using the indices of criti-
cal points as labels, the labels form linked lists of vertices terminating in
a critical point, representing the head of a linked list; (e) Traversing the
implicit linked list backward while traversing the merge graph (containing
only critical points) allows one to correct all labels along the path.

We correct the pre-segmentation in a second pass by adjusting first
for former critical points that are now regular and then for additional
saddles. Since the representative label corresponds to a mesh index,
one can use the stored labels as pointers into the array of vertices,
see Fig. 6(d). For each vertex, we follow the chain of label pointers
upward until we find a critical point (indicated by a vertex pointing
to itself). This step corrects for any regular vertices that used to be
critical. We then process the chain in the opposite direction while
simultaneously traversing the nodes and arcs of the merge tree, see
Fig. 6(e). In this manner we can determine the correct labels for all
vertices in the chain. Notice that, after a vertex as been touched once,
it stores a pointer to a critical point shortcutting any chain it might be
part of in the future.

Nevertheless, this second pass re-traverses all vertices and is cur-
rently not performed in a streaming manner. While the merge tree is,
by construction, stored in a streaming fashion the chains of vertices
created during the traversal can represent a random access into the ar-
ray of vertices. To avoid loading the entire array of vertices into mem-
ory and thus losing the advantage of a small memory footprint, we
store the pre-segmentation as a memory mapped file. Consequently,
the native paging system will ensure that any piece of the array nec-
essary for the traversal is available. This strategy supports processing
(almost) arbitrarily large data sets independently of the available main
memory but potentially causing extensive disk swapping. In practice,
the segmentation contains significant natural coherency and the pre-
segmentation is accurate enough for this strategy to perform well. Fi-
nally, it is important to point out that when vertices are eliminated
from the input stream before the computation they do not need to be
stored and thus the segmentation will only be computed on the relevant

subset of vertices.
The second stage of the segmentation process also provides a con-

venient way to adjust the segmentation to any simplification and/or
splitting. After computing the initial merge tree, we can simplify the
tree as discussed above. In that case, we reassign the segmentation
labels of the simplified critical points to the critical point of their sib-
ling arc. Furthermore, augmenting the tree with valence-two nodes is
straightforward since the new segments are naturally introduced dur-
ing the downward traversal. Finally, we use the second stage traver-
sal to compute various attributes of the segments such as volume or
average function value. In particular, we use the numerically stable
parallel statistics algorithms of Bennett et al. [62] to compute vari-
ous kth-order moments of the data. Note, that these computations are
not limited to the function used to define the merge tree. Instead, we
can pass an arbitrary number of secondary properties, e.g., tempera-
ture, mass fraction of various species etc., through the segmentation.
As a result, we obtain these statistical properties conditioned on the
primary segmentation allowing us to later compute a large number of
conditional statistics, see Section 6. The resulting values are added to
the hierarchical merge trees. We store the attribute itself, e.g., aver-
age fuel consumption, as well as all necessary information to correctly
combine the attributes of two segments, e.g., current average of fuel
consumption plus number of cells in the segment. This allows the in-
terface to update accurately and interactively the attributes as the user
changes the fuel consumption threshold. Finally, the segmentation is
stored as a flat binary file of one label per vertex. As before, only
vertices not culled from the stream are stored.

5.3 Feature Tracking

Given the hierarchical merge trees and corresponding segmentations
for all time steps we track features defined by a given static thresh-
old. Note that in this context all time steps should be understood as
all available time steps. Due to the cost of I/O operations and lim-
ited disk-space, simulations typically save only a small fraction of the
actual time steps. In our particular application past experience [19]
has shown that the available temporal resolution is on the lower end of
what is required for adequate tracking and thus we use all given data.
We track features by spatial overlap which appears to be adequate for
our purposes. However, since we have a complete description of fea-
tures the framework can be easily extended to any number of more
sophisticated techniques. For example, one may track the direction of
the center of gravity [13] of a feature for a prediction / correction type
of tracking or use schemes that rely on time interpolation [19]. To de-
termine the potential overlap we load the merge trees of two consecu-
tive time-steps and adapt them to the given threshold. We then traverse
the vertices of both segmentations in parallel determining their active
segmentation index and if both vertices are above the threshold add
a (tracking graph) arc between the corresponding features. The ac-
tive segmentation index is computed as the segmentation index stored
in the file adapted to threshold simplification. Since the simplifica-
tion consists of a sequence of merge operations adapting a segmen-
tation index corresponds to a union-find style search for the highest
un-simplified ancestor. Note that we could adjust easily the threshold
to be time-dependent as each merge tree is handled separately.

Due to the large number of timesteps involved creating a tracking
graph cannot yet be performed interactively. Furthermore, creating
a layout for a given graph, even using state of the art tools such as
dot [63], remains too slow for interactive techniques. However, it is
important to point out that the tracking graphs are created from the
pre-computed segmentations and not the original data so all processing
involved can easily be handled by a standard desktop computer.

For static grids the tracking is by design a streaming process. Each
vertex is treated independently and since the vertices are in the same
order for both time steps only two consecutive merge trees must be
kept in memory. For each time interval we dump the partial tracking
graph to disk to be assembled at the end. For time-dependent meshes
such as AMR grids this strategy may fail as grids and thus vertex order
in two consecutive time steps may differ. In this case we also store an
index map for each vertex that maps its local index to a (virtual) global
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Fig. 7. Example of burning cells being tracked over time. The graph shows a small portion of the tracking graph for the SwirlH2 data set between
time steps 1420 through 1465. The insets show the corresponding segmentation as nodes are selected in the graph. Over the course of these
time steps the large cell represented by the left most node slowly sheds smaller cells until it finally breaks apart into three independent pieces.

grid. During the overlap computation the vertices of both time steps
must be mapped into global index space before an accurate tracking
is possible. In this case we store one index map as a hash table in
memory while streaming through the other index map along side the
segmentation. The index maps are naturally in the same order as the
segmentation files and are stored analogously as a flat binary file con-
taining one index per vertex.

An example of features getting tracked through time is shown in
Figure 7. The figure shows a small portion of the tracking graph for
the SwirlH2 data set for time steps 1880 through 1895. The embedded
screen shots show the main segmentation display when the indicated
node has been selected. For a live screen capture of such a selec-
tion being done interactively we refer the reader to the accompanying
movie.

5.4 Graph Simplification
As can be seen in the accompanying material, the tracking graphs can
become highly complex and difficult to understand. Furthermore, they
contain artifacts of the thresholding such as tiny features existing for
only one or very few time steps. To reduce the graph complexity and
eliminate some of the artifacts we simplify the tracking graphs by re-
moving all valence zero nodes as well as nodes with a volume smaller
than a given threshold. Since the original data is piece-wise constant
we use the number of vertices corresponding to each node as a measure
of volume. During the interactive session recorded in the movie one
can clearly see how removing small features substantially unclutters
the segmentation leaving only the larger features of interest. Similarly,
such simplification significantly streamlines the tracking graph by sup-
pressing unnecessary details. In order to avoid disconnecting segments
above the volume threshold and thus structurally changing the track-
ing graph we restrict the simplification to successively removing leafs
below the volume threshold.
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Fig. 8. Determining the tracking graph simplification threshold: The
graphs show the number of nodes remaining in the tracking graphs vs.
the simplification threshold for the restricted portions of the SwirH2 (top)
and SwirlH2Fast (bottom) data set.

To choose an adequate volume threshold we study how the num-
ber of nodes in the tracking graph changes as we increase the volume
threshold, see Fig. 8. The graphs show a clear separation between

noise and features. To reduce the complexity of the graphs and the
cost of the layout we chose values on the upper range of the suggested
noise level for simplification. All examples shown here use a threshold
at around 100 vertices.

6 INTERACTIVE EXPLORATION

The primary focus of our work is to provide the application scientists
with the ability to comfortably explore their data in a manner meaning-
ful in their particular problem space. Visualization is an important tool
to validate simulations as well as to deliver a high level understanding
of the underlying phenomena. Furthermore, it is a powerful method
to investigate and setup further in-depth data analysis. For example,
allowing the user to explore easily variables conditioned on the ex-
tracted features provides a simple way to understand whether various
conditional statistics may provide new insights into the data.

To understand turbulent combustion, traditional visualization tech-
niques are only of limited help. For example, while iso-surfaces at var-
ious thresholds would deliver geometry similar to our segmentations
they contain none of the key information about whether two burning
cells are connected, how many individual components exists, and/or
their sizes, average values etc.. Clearly all this additional information
could be computed but it would require accessing the original data at
16 Gigabytes per time step which would make any interactivity im-
practical. The hierarchical merge trees instead pre-process the data
with respect to one of the most important aspects of the data (the burn-
ing cells) and store all additional information in accordance with this
segmentation. Even for the more complicated SwirlH2Fast data set the
resulting information only requires a roughly 6Mb ASCII file describ-
ing the hierarchical merge trees including attributes, a 144Mb segmen-
tation, and a 144Mb index-map file per time step. Using standard gzip
compression, these reduce to roughly 70Mb, which corresponds to a
data reduction of more than two orders of magnitude, while still pro-
viding greater flexibility in the segmentation and selection than possi-
ble using standard techniques.

While the overall appearance of the system described below is sim-
ilar to the one used in [6], we stress that the functionality of the new
framework is significantly greater. The system proposed in [6] re-
quired separate tools to view segmentations and tracking graphs with
no means of interchanging information. Furthermore, the drawing of
the tracking graphs was severely limited by the performance of stan-
dard SVG-viewers. Finally, the system had no mechanism to incor-
porate additional statistical information. Instead, this paper presents a
fully linked system in which the user can explore the tracking graph,
the corresponding segmentation, and the conditional statistics simul-
taneously with on-demand data loading.

In the following we will describe the different aspects of our inter-
face as well as the algorithms used to implement the various features.
When discussing the interface we will use Roman numerals referring
to Fig. 9 to illustrate the different components.
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Fig. 9. Illustration of the different components of the user interface. (I) 3D display of the segmentation including a slider to select the fuel
consumption threshold (II), the interface to determine the number of in-memory time steps (III), and the button to load the geometry (IV); (V)
Interactive display of the tracking graph. Selecting node in either the 3D viewer or the graph display causes the corresponding cell to be highlighted
(VI) and its attribute information to be displayed in the info window (VII). The last window (VIII) provides the ability to sub-select segments based
on attribute values.

6.1 Graph Display

One of our two main windows (V) is dedicated to the display of the
tracking graph. Similar to our previous work in [6] we use dot [63]
to layout the tracking graphs. However, unlike [6] we no longer rely
on external tools to draw the resulting SVG file. Instead, we have
developed a fully interactive OpenGL-based display of the graph that
provides two key advantages: First, the graph view is now directly
linked with the segmentation display and thus can be used to select
nodes and or time steps; Second, we can easily apply various color
maps to the nodes of the graph representing one additional attribute
of each node. To reduce the visual clutter, only the non-valence two
nodes of the tracking graph are shown while sequences of valence two
nodes are indicated by unbroken arcs. For exploration we typically use
the cell volume (represented by the number of vertices within the cell)
to highlight larger cells. To display the graph, we load its geometry
into OpenGL, which allows us to draw even the largest graphs fully
interactively. As evidenced by the accompanying SVG and PDF files,
this is a significant improvement over standard tools.

The graph display not only provides a visualization of the graph
but the user can also select nodes or arcs. When selecting an arc, the
system automatically selects the closest valence two node along this
arc. A selection triggers two actions. First, the system loads the merge
tree of the corresponding time step and, if desired, a number of neigh-
boring time steps (see below). Since merge trees are comparatively
small, the trees are loaded interactively from disk without any caching
or other acceleration mechanism. Second, the segment id and all its
corresponding attribute information are extracted from the merge tree
and displayed in the info window (VII). This linked selection mech-
anism is a significant improved over the previous system [6], which
required the user to view graphs and segmentation in isolation without
means to exchange selections or other information.

Note that the current threshold of the merge tree is driven by the
segmentation display (slider II), see below, while the graph uses a sin-
gle fixed threshold. Thus, during selection graph and merge tree can
use different thresholds, in which case the system automatically adapts
the selection: If the merge tree threshold is smaller (bigger cells) the
segment containing the picked one is selected; If the merge tree thresh-
old is larger (smaller cells) the information for the appropriate sub-
segment is shown. Finally, if the node the user has selected corre-
sponds to any segment currently shown, this segment will be high-
lighted (VI).

6.2 Segmentation Display

The other main window (I) displays the segmentation and allows the
user to vary the threshold (II) and pick the number of in-memory time
steps (III). Even though the segmentation is tiny when compared to the
original data, parsing roughly 150Mb of binary data into the display
data structures currently cannot be performed interactively. Thus, we
always load the merge tree information first, providing attribute and
hierarchy information. If the user wants to explore a segmentation in
more detail, the necessary data is loaded via a button within about a
second depending on data size and available hardware. Note, that this
performance could likely be improved significantly using compression
to reduce I/O time or by preprocessing the segmentations further to be-
come more closely aligned with the display data structures. As men-
tion before, data is cell centered and piece-wise constant. Therefore,
we display each vertex of the segmentation as a box to preserve as
much of the characteristics of the original data as possible. Individ-
ual cells are displayed using one of eleven colors at random, reserving
bright-red for highlighted cells. Looking at the segmentation it is im-
portant to remember that we use the full 26 neighborhood when com-
puting the merge trees. Thus, even cells touching only at their corners
are considered connected.

Similar to the graph display, the segmentation view supports se-
lection of individual segments displaying their information in a sep-
arate window (VII). Finally, we provide an additional window (VIII)
that makes it possible to sub-select segments based on the various at-
tributes. We note that we do not use the attributes directly stored in
the merge tree. Instead, we aggregate attributes by means of pair-wise
statistics [62] following the merge tree simplification corresponding
to the currently selected threshold. As a consequence, selection is
always performed using the attribute values appropriate for the cur-
rent segmentation. Overall, the system supports to exploring the entire
time series of a combustion simulation at arbitrary thresholds and us-
ing conditional selection criteria.

7 RESULTS

This paper presents a new visualization and analysis framework to ex-
plore one-parameter families of time-dependent segmentations. For
the first time it is possible to interactively choose between any of the
potential segmentations while exploring additional data attributes. The
system is based on a new streaming merge tree algorithm that over-
comes the unfavorable scaling of its intellectual ancestor [7] and is
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much easier to compute than similar segmentations [6, 44]. Further-
more, we have presented a linked-view environment integrating the
browsing of large tracking graphs with the interactive visualization
of flexible segmentations and coupled to conditional sub-selections
based on arbitrary data attributes. Finally, the flexible, one-parameter
families of segmentations and their corresponding statistical informa-
tion enables in depth statistical analysis and parameter studies, which
would be infeasible using current techniques. With respect to the ap-
plication presented here, our framework represents fundamentally new
capabilities in studying turbulent flames. Two co-authors of this paper
(Marcus Day and John Bell) in particular are actively using the infor-
mation provided by our system to formulate new hypotheses on the
combustion process.

The first significant observation is that the flames in the low-swirl
configuration seem to burn in two different modes, see Fig. 1(e). Over-
all, the burning cells create a bowl shaped structure centered above the
burner. To better highlight the center of the flame, the images in this
paper, as well as the accompanying movies, show the flame up-side-
down looking toward the bottom of the bowl in direction of the fuel
stream. Around the center of this bowl, cells appear to behave much
like the idealized flames studied in [64]. On the outside, however,
the flames burn more chaotically in smaller, irregularly shape regions.
The behavior of these fringe cells is very unlike that of the idealized
flames and it is not yet clear how to model them. Therefore, the initial
analysis has focused on the center of the bowl.

(a) (b)

Fig. 10. Burning cells within a cylinder of radius 2.5cm centered in the
middle of the data using 2.6kgH2

/m3s as fuel consumption cut-off. The
view direction is is the direction of the fuel stream. (a) Time step 1500
of the SwirlH2 data; (b) Time step 3000 of the SwirlH2Fast data.

Based on observing the cell structures, a cut-off radius is selected
and we extract only the data on the interior of a cylinder with radius
2.5cm centered on the burner, see Fig. 10. The corresponding block
of data has dimensions 321× 321× 251 compared to the 10243 sam-
ples of the complete data set. We then compute the hierarchical merge
trees and the corresponding segmentations necessary to explore this
data in more detail. Studying the segmentations at different thresholds
reveals significant differences to the idealized flames of [64, 6]. As
can be seen in Fig. 10, the previously used threshold of 2.6kgH2

/m3s
no longer represents a viable choice. Rather than separating the vol-
ume into the cellular burning regions, it defines few very large cells
inconsistent with the initial expectation. Instead, for the SwirlH2 data
set the segmentations suggest a threshold of around 5kgH2

/m3s, see
Fig. 13, and for the SwirlH2Fast an even higher threshold at around
8kgH2

/m3s, see Fig. 14. To validate these empirical observations, we
compute the weighted cumulative density functions (WCDFs) of the
distribution of cell size and compared them to the idealized flames.
We also repeated the surface based analysis introduced in [6] to arrive
at two sets of distribution functions for each low-swirl experiment,
see Fig. 15. As suggested by the visualization, the distributions show
a markedly different behavior for lower fuel consumption thresholds.
For small thresholds the distributions become exponential indicating a
small number of larger cells rather than the logarithmic behavior seen
in previous studies. However, as the threshold increases, the distribu-
tions continuously change to a logarithmic shape. Furthermore, the
area distributions of the 2D analysis changes its characteristic at a sig-
nificantly lower threshold.

To further quantify this shift, we compute the skewness [65] of
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Fig. 11. Skewness plots of the weighted cumulative density functions
of the idealized flames analyzed in [64] together with the skewness of
the 2D and 3D WCDFs of the SwirlH2 and SwirlH2Fast data. All curves
show qualitatively similar shapes switching from exponential WCDFs to
logarithmic ones as the fuel consumption threshold is increased. How-
ever, for the swirling flames studied here the distributions are noticeably
shifted to higher fuel consumption and the 3D WCDFs are shifted further
than the 2D WCDFs.

the distributions of both idealized flames at different turbulence lev-
els as well as the low-swirl flames presented here. The skewness of an
exponential type cumulative density function would be smaller than
zero, that of a linear CDF zero, and that of a logarithmic CDF larger
than zero. The resulting graphs show several interesting results, see
Fig. 11. Clearly the surface based analysis skews the distributions to
become logarithmic for smaller thresholds. Furthermore, the graphs
for the three-dimensional segmentations validate the visual impres-
sion of thresholds around 5.0 and 8.0 for the SwirlH2 and SwirlH2Fast
case respectively. Finally, even the idealized flames show exponential
WCDFs at very low thresholds something not seen in previous studies.

It is important to point out that each of the data points in Fig. 11 rep-
resents a complete analysis of all time steps of the respective data sets
for one particular threshold. Thus, creating this plot using traditional
techniques would require 168 separate processing runs. Instead, the
entire statistical analysis presented here requires only the hierarchical
merge trees not the original data. This fact is crucial to allow such ex-
tensive studies since accessing the original data would be prohibitively
expensive. While seemingly mundane the reduction in disk space nec-
essary to store the “entire” simulation is one of the significant practi-
cal benefits of our framework. We store the hierarchy, segmentation,
and corresponding index maps of the entire simulation (not the radius
based sub-section) using roughly 13GB and 20GB of gzipped files for
the SwirlH2 and SwirlH2Fast case, respectively. Given the 3.9 and 4.5
Terabytes of original data this corresponds to a compression of more
than two orders of magnitude without sacrificing information. This
allows us to visualize and analyze the data on commodity hardware,
something infeasible using the original data.

Using the skewness plots of Fig. 11 as a guide we choose 5
(SwirlH2) and 8 (SwirlH2Fast) as thresholds for the tracking and cre-
ated the corresponding graphs. We use dot [63] to compute a layout
and use the resulting svg files for display purposes. Unfortunately,
the graphs are too large to be included in this paper. However, we
provide these graphs and others at different levels of simplification as
additional material, and some are shown in the accompanying movies.
As discussed in Section 6 we can use the tracking graphs along side
the segmentations to explore an entire time sequence on commodity
hardware.

Combining the visual observations of Fig. 13 and 14 with the sta-
tistical results shown in Fig. 15 might suggest that the swirling flames
behave similar to the idealized flames but at overall higher fuel con-
sumption rates. However, further exploration shows that the results of
the spatially restricted data are misleading. Clearly some cells cross
the cylindrical center region and thus get cut. One would therefore
expect some cells to appear slightly smaller, which could be taken into
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account during the analysis. However, a more significant problem is
that cells can also become disconnected. In fact, segmentations of the
entire data show that most cells that appear isolated in the center of the
data are connected on the outside of the cylinder, see Fig. 16 and 17.
This creates small sets of large cells for even higher thresholds than
the plots of Fig. 11 suggest. Only for significantly higher thresholds
of 8.0 and 12.0 do the complete flames break apart into smaller com-
ponents, see Fig. 12. Overall, it appears that the low-swirling flames

(a) (b)

Fig. 12. (a) Burning cells in the SwirlH2 data at time step 1500 using
a fuel consumption threshold of 8.0kgH2

/m3s; (b) Burning cells in the
SwirlH2Fast data at threshold 12.0kgH2

/m3s.

are in a substantially different regime than the idealized flames. Our
interactive framework coupled with the data analysis made possible
by using augmented hierarchical merge trees has been instrumental
in trying to better understand the underlying dynamics controlling the
low-swirling flames and has open several new research directions.

All data processing was performed in parallel on an SGI Altix 350,
with 32 Itanium-2, 1.4 GHz processors using one processor per time
step. The movies were created using a single core of an Apple Mac-
intosh server with eight 3 GHz Intel Xeon processors. The run times
for a single representative time step for computing the merge trees and
corresponding segmentation are given in Table 1. To better illustrate
the cost split between file I/O and computation we report two numbers
for each case: First, the time for extracting the raw data and dump-
ing the resulting stream to a file. Second, the time to process this file.
Note that the file I/O for the block based output of the complete files is
better aligned with the internal AMR data format, which explains the
similar running times even though significantly more data is extracted.
As discussed before, we use the flexibility of the streaming computa-
tion and discard all incoming vertices below a fuel consumption of 0.1.
This is a conservative threshold that nevertheless significantly reduces
the amount of data that must be processed without loosing any infor-
mation of interest. Even after discarding all vertices and edges with
minimal fuel consumption the remaining mesh for the SwirlH2Fast
data set consists of more than five Giga bytes of binary data.

The table also highlights the difficulties with the approach taken
in [46]. Requiring the input to be a regular grid and pre-sorting the
data incurs a very significant cost overhead. In particular, past exper-
iments show that re-sampling the original AMR-data can take orders
of magnitude longer than the analysis itself while requiring non-trivial
amounts of disc-space.

7.1 Discussion and Future Work
While we can compute the tracking graphs for the full AMR based
data including the cells on the fringes, the resulting graphs are diffi-
cult to handle. Dot currently does not scale gracefully to these large
graphs and creating a layout can take hours or fail all together. Fur-
thermore, assuming a layout is created the resulting graphs are difficult
to interpret even after heavy simplification. Currently the graphs, un-
like the segmentations, are computed for a static threshold. The data
structures contain sufficient information to create graphs efficiently for
variable thresholds. However, to view these graphs would require an
interactive layout, which is beyond the current state of the art. Thus,
new paradigms are needed to handle such graphs potentially involv-
ing more sophisticated simplification and hierarchical representations.
Nevertheless, we can explore this data even without the graphs as
shown in the accompanying movies.

SwirlH2 SwirlH2Fast
Center Complete Center Complete

Parallel File I/O 193sec 355sec 210sec 569sec
File Parsing 15sec 205sec 15sec 361sec

Serial Processing 57sec 1067sec 70sec 2684sec
Data Size (raw) 99Mb N/A 99Mb N/A

Data Size (filtered) N/A 3.0Gb N/A 5.1Gb

Table 1. Run-times and data sizes for the processing of a single repre-
sentative time step for the SwirlH2 and SwirlH2Fast data set. The paral-
lel file I/O columns report the times to write the raw data to file, the serial
processing columns reports the time to process these files. In practice
both processes run in parallel which effectively hides the file I/O. For the
restrictions to the center we store a regular grid with no connectivity and
enforce the cylindrical cut-off using distance based flags. For the com-
plete data we stream a binary representation of vertices, edges, and
finalization directly to the merge tree module. The data sizes reported
are determined by re-directing this stream to a file.

Finally, loading and drawing the geometry becomes noticeably
slower for larger data and increasing the resolution by a factor of eight
as planned for the future will push the system beyond its current capa-
bilities. However, the rendering code as well as the file I/O is currently
entirely un-optimized and contains many opportunities for future im-
provements. One approach might be to use a compressed file format
to reduce file I/O.

8 CONCLUSIONS

We have presented an interactive framework for exploring and analyz-
ing one-parameter families of segmentations and applied it to study
large scale turbulent combustion. Using hierarchical merge trees and
their corresponding segmentation we allow to both visualize and post-
process entire simulations using pre-processed data orders of magni-
tude smaller than the original data sets. Providing easy access to cor-
rect and comprehensive segmentations including derived attributes has
proven to be a powerful tool to better understand turbulent combustion
and to form new hypotheses on the underlying physical processes.
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