
Topological Analysis of High Velocity Turbulent Flow
Thibault Bridel-Bertomeu*

CEA, France
Benjamin Fovet†

CEA, France
Julien Tierny‡

CNRS, Sorbonne Université, LIP6, France
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Figure 1: Topology-based tracking and analysis of vortices (flow density, height is time). The vortex trajectories (a) exhibit 3 modes
in terms of duration, corresponding to the 3 colors in the inset histogram (b): noise (white), intermediate length (blue) and full length
(green). The 4 longest trajectories (c) are used to analyse the time evolution of flow density at the center of vortices, indicating an
increase tendency. See the second companion video (blue spheres: counter-clockwise vortices, green spheres: clockwise vortices).

ABSTRACT

In order to guarantee the performances of complex systems, the
CEA is driving large numerical simulations in various fields such as
thermomechanics, electromagnetism and aerodynamics. Due to the
size of the problems and the use of High Performance Computing
approaches, large and complex datasets need to be explored to under-
stand the physical phenomena. This paper focuses on the exploration
of a compressible turbulent 2D flow, to better understand the flight
behavior of an object. Topological data analysis (TDA) is used to
improve understanding and avoid costly traditional methods such as
3D modal decomposition algorithms or highly technical hydrody-
namic stability codes. The attention is put on the large eddies shed
behind a cylinder hit by a crossflow. Thanks to TDA the tracking of
the eddies, the identification of their origin and the evolution of their
amplitude with the downstream distance are facilitated.

1 BACKGROUND

This work addresses the analysis of large structures in computational
fluid dynamics (CFD, Sect. 1.1) with topological data analysis (TDA,
Sect. 1.2). It constitutes a first step towards the application of TDA
for the analysis of more complex flows (flight of a projectile).

1.1 Numerical simulation
The data generated for the present study (detailed in Sect. 2) comes
from a direct solver of the Navier-Stokes (NS) equations. These
equations can be written in tensor form as [16]:

ρt +∇ · (ρV) = 0
(ρV)t +∇ · (ρVV) =−∇p+∇ ·S
(ρE)t +∇ · (ρEV) = ∇ · ((S− pI) ·V)+∇ ·q,

(1)
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Figure 2: Topological analysis of a single time step. a) Line Integral
Convolution [3] of the input vector field. b) Flow density. c) Merge
tree based vortex segmentation (spheres: center). d) Persistence
diagram. e) Terrain view. See the first companion video (blue: counter-
clockwise rotations, green: clockwise rotations).

where ρ is the density of the fluid, V its velocity vector, p its pressure,
E its energy and S and q represent respectively the effects of viscous
strain and heat transfer onto the motion and the energy of the fluid.
During the post-processing of the data (described in section 2) we
will be most interested in ρ and V = [u,v,w]t . These equations are
solved using a conservative finite volume algorithm on a Cartesian
grid (see e.g. [15]), and any complex boundary located inside the
domain is handled using a ghost-cell based immersed boundary
method [5, 10]. The Roe approximate solver [15] has been used for
the numerical fluxes, with the left and right states being interpolated
using a 5th order WENO scheme [9] while timestepping has been
kept explicit and the time derivative discretized using a 3rd order,
strong stability-preserving Runge-Kutta algorithm [7].

1.2 Topological Data Analysis
Topological Data Analysis is a recent set of techniques [6,12], which
focus on structural features in data. For our analysis, we used
several established techniques, readily available in the “Topology
ToolKit” (TTK) [13]. To adjust the parameters of our analysis, we
first considered a single time step (Fig. 2). In particular, vortices
were identified as local minima of ρ and their region of influence
given by a merge tree based segmentation [8]. The rotation direction
of each vortex is estimated by the sign of the orthogonal component



Figure 3: The two trajectories which maximize lateral movement (blue and green) correspond to 2 clockwise vortices which merge together. Due to
the irregularity of this von Kármán street, vortices interact with each other. When they rotate in the same direction, interacting vortices attract each
other in a spiral movement (hence the high lateral movement) and eventually merge, as captured by our analysis. See the third companion video.

Figure 4: Zoom in the shear-layer region behind the obstacle (left).
Clockwise vortices (green) seem to be generated in the low-pressure
region whereas anti-clockwise (blue) eddies seem to be born in the
high pressure region (merge tree segmentation, right, of a Gaussian
density estimation of the long trajectory starts, middle).

of the curl of V. To discard noise, vortex importance within a single
time step was assessed by the topological persistence [6] of the
corresponding minimum of ρ . To estimate an appropriate persistence
threshold, we considered the persistence diagram (Fig. 2(d)) which
represents each minimum, denoting a vortex, as a vertical bar, whose
height denotes the density amplitude of the vortex. Bars near the
diagonal, corresponding to noisy structures, can easily be isolated
(persistence below 10% of the global value range) and the data can
be simplified [14] to account for this noise removal.

Next, minima of ρ are tracked through time by estimating an
optimal assignment based on the Wasserstein metric between consec-
utive time steps [11] (Fig. 1, geometrical lifting coefficient: 0.005).

2 CASE STUDY

This section presents our turbulent flow data and its interpretation.

2.1 Data description
The considered use case is a von Kármán street (Fig. 2): fluid enters
the domain behind a cylinder obstacle (left) at Mach 0.475 and with
a Reynolds number of 105, and can only exit at the other end of
the domain, the rest of the boundaries being set as periodic. The
computation is run up to t f = 8.5×10−3 seconds in physical time by
15,625 steps. A total of 625 snapshots have been taken in order to
realize the present analysis, separated from each other by a constant
timestep of 1.35×10−5 seconds, i.e. at a frequency of about 75 kHz.
Each snapshot stores ρ , ρV and ρE (Sect. 1.1) in double precision
on a 5000×400 2D grid, yielding a total amount of data of 14 GB.

2.2 Interpretation
The extraction and temporal tracking of the vortices thanks to TDA
took 215 seconds overall (Xeon CPU, 2.6 GHz, 2x6 cores). The
vortex tracking provides a valuable feature representation for further
analysis and interpretation. In particular, the 4 longest trajectories (in
color, Fig. 1) are used in the remainder to estimate further statistics.
For instance, we use the startup time of these trajectories to estimate
the frequency of the vortex shedding (1,500 Hz), which matches
the theoretical expectations [1] and validates the relevance of our
analysis pipeline.

The time evolution of the Y coordinate of a vortex center is
used to denote its lateral movement, which assesses how much a
vortex trajectory deviates from a straight line. The 2 trajectories
which maximize their lateral movement are shown in Fig. 3. These
correspond to two interacting vortices rotating in the same direction,
entering a coupled spiral movement and eventually merging together.
This indicates that this kind of vortex merging can be systematically

tracked thanks to TDA. Our analysis also enables to investigate
the vortex start points, also known as wavemakers (Fig. 4). In
hydrodynamics, determining wavemaker locations often requires
stability analyses [2, 4] that are tricky to develop and manipulate.
This information can be, however, of great importance, for instance
for the identification and resolution of sources of vibrations in an
engine. Here, by considering a merge tree segmentation of a density
estimation of the trajectory start points, locations for wavemakers
can be estimated, which could open new horizons in future work.

3 CONCLUSION AND FUTURE WORK

In this work, we showed that established methods from TDA could
be used to provide an analysis support for the detailed investiga-
tion of high velocity compressible turbulent flow, which would be
difficult to conduct with traditional methods. In particular, our frame-
work enabled to estimate vortex shedding frequency, wavemaker
locations as well as to extract vortex merging events. In future work,
we plan to transpose this analysis to the flight of a projectile in an
in-situ setting, with more challenging data sizes and resolutions.
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