
Implementing Persistence-Based Clustering of
Point Clouds in the Topology ToolKit

Ryan Cotsakis∗, Jim Shaw∗, Julien Tierny, and Joshua A. Levine

Abstract We show how the scalar field topology features of the Topology ToolKit
(TTK) can be leveraged in a pipeline for persistence-based clustering of point clouds.
While TTK provides numerous features for computing topological structures of
scalar fields on unstructured meshes, prior to this work, it allowed for only basic
point cloud input. In this work, we implemented two new modules in TTK: one for
sampling scalar fields based on either distance or density of the point cloud and a
second for computing persistence-based clusters. Both modules provide heuristics
for automatically specifying key thresholds so as to simplify user interaction. This
document outlines the implementation details of the two modules and provides
experimental results that demonstrate their modularity and utility.

1 Introduction

Clustering is an important tool used widely in data analysis.We consider the problem
of clustering point clouds. The input dataset is an unstructured collection of points
that are a discrete subset of R𝑑 . Clustering seeks to partition the points into a set of
logical groups (clusters) such that points in the same group are more similar to each
other than they are to points in the other groups. From a data analysis perspective,

Ryan Cotsakis∗
University of British Columbia, e-mail: ryancotsakis@gmail.com

Jim Shaw∗

University of British Columbia, e-mail: jimshawster@gmail.com

Julien Tierny
CNRS / Sorbonne Université, e-mail: julien.tierny@sorbonne-universite.fr

Joshua A. Levine
University of Arizona, e-mail: josh@email.arizona.edu
∗Both authors contributed equally to the work

1



2 Ryan Cotsakis, Jim Shaw, Julien Tierny, and Joshua A. Levine

clustering is often an importantmodule for other downstream tasks that either directly
utilize the clusters, or study how many, how large, or how spread out clusters are.
When the data is unstructured, as is the case of point clouds, clustering typically

requires building a model based on other prior knowledge or assumptions on the
dataset. This knowledge can be used to infer distance and/or similarity measures or
otherwise make decisions about how to define what properties delineate grouping.
As a result there is no singular goal for clustering applicable in all settings.
On the other hand, segmenting a scalar field has similar goals to clustering and

provides an interesting counterpoint. Compared to segmenting a point cloud, seg-
menting a scalar field has a variety of tools that naturally decompose the field based
on features encoded in the scalar field. Common techniques for this include wa-
tersheds in image segmentation [5, 6] and topological segmentation via the Morse
complex [12, 26]. A particular advantage of topological segmentation techniques is
the ability to provide a hierarchy of segmentations that respect a notion of simpli-
fication. Specifically, topological persistence allows one to rank the importance of
segments, jointly simplifying the scalar field while leading to a coarser segmenta-
tion [13].
Leveraging the strengths of using scalar field topology for segmentation, one

approach for segmenting point clouds is to first compute a scalar field from a given
input point cloud. This scalar field serves to provide the additional prior information
and provide structure for the dataset. For example, one simple proposition is to use
a scalar field that estimates the density of the points themselves, resulting in clusters
that relate to those computed by density-based clustering [14]. Of course, the choice
of scalar field is a free parameter to the clustering algorithm and other scalar fields
could be use that encode distance or similarity. After segmenting the scalar field, one
can then associate each point with the labels assigned to nearby regions of the domain
of the scalar field, and then use this assignment to produce the final clustering.

1.1 Contributions

In this work we leverage the features of scalar field segmentation for point cloud
segmentation. We primarily follow the methodology of Chazal et al.’s algorithm
ToMATo [9] for designing the scalar field, except we replace the domain as rep-
resented by a neighborhood graph with a simple triangulated grid on which we
sample the field. Our main contributions are the implementation details for adapting
this approach into a large framework for topological analysis, the Topology ToolKit
(TTK) [27]. Specifically, our contributions are:

• We describe the implementation for persistence-based clustering of point clouds
in TTK. This involved implementing two new modules: one for computing a
scalar field from a point and a second for clustering via persistence.

• As we aim for a non-parametric method, we design heuristics for automatically
selecting parameters involved in both modules that work well in most settings.



Implementing Persistence-Based Clustering of Point Clouds in TTK 3

• We report experimental details on the efficacy of our heuristics as well as discuss
important design considerations.

2 Related Work

Clustering methods are well-studied over the past forty years, with common ap-
proaches that include k-means [19], density-based clustering like DBSCAN and its
variants [14, 24], mode-seeking methods [18] such as mean shift [10], and spectral
clustering [30]. These methods have been used in a wide variety of applications in
data analysis, image processing, computer graphics, and statistics. Thus, a variety of
practical tools implement clustering, thus making it desirable for the users of TTK
as well.
Our work emphasizes using topological tools for clustering, via computing seg-

mentations that can be simplified through topological persistence [13]. Topological
analysis has led to a variety of tools for data analysis in general, and relies on the field
of persistent homology to compute and rank features (see Edelsbrunner and Harer
for a thorough introduction [11]). Chazal et al. were one of the pioneers of using
topological persistence for guiding clustering of point clouds [9] and as mentioned
previously our work is using a conceptually similar pipeline adapted to TTK [27].
This approach builds on key theoretical results where the same authors show one
can recover structural information of scalar fields from samples [8].
Others have also pursued using topological analysis for clustering. Particularly,

Beksi and Papnikolopoulos have shown the utility of clustering 3D point clouds [2, 4]
and designing signatures for points [3]. Moon et al. design the persistence terrace
to help provide a summary plot to guide the inference process [20]. These methods
all focus on low-dimensional point sets (typically two- and three-dimensional data).
Nevertheless, many applications of clustering focus on higher dimensional point
clouds. Using topological analysis can also work in this setting, but there are certain
challenges with computing and visualizing the topological structure of segments.
Oesterling et al. show methods for capturing the topology of high-dimensional point
cloud density fields [21] by constructing topological landscapes to provide a tangible
metaphor [22].

3 Software Design Overview

We implemented persistence-based clustering for point clouds in TTK by creating
two new modules. The first module, ScalarFieldFromPointCloud, computes a scalar
field from a given input point cloud that will be used to analyze the structure of the
point cloud. The second module, PersistenceSimplification, is used to simplify the
scalar field in preparation for topological segmentation. Both modules enable a few



4 Ryan Cotsakis, Jim Shaw, Julien Tierny, and Joshua A. Levine

user controls for segmentation, but can also be used in an automatic mode where all
parameters are set by default heuristics.
To complete the clustering, we wrap these modules in a pipeline with five steps:

(1) read the input point cloud, (2) compute a scalar field, (3) simplify this field with
persistence, (4) perform topological segmentation with the Morse complex, and (5)
map the segmentation labels from the scalar field domain to the input point clouds.
Steps (1), (4), and (5) leverage existing modules in both TTK as well as standard
methods that exist in the ParaView [1]. Steps (2) and (3) are developed as standard
TTK modules that we also enable as ParaView plugins for experimentation.

4 Computing Scalar Fields from Point Clouds

As previously mentioned, ScalarFieldFromPointCloud takes a point cloud as an
input and constructs a triangulated regular grid surrounding the input point cloud.
The grid size as well as boundary padding may be specified by the user. The grid
is the domain of the scalar field that ScalarFieldFromPointCloud outputs. As with
Chazal et al. [9] we experimented with two difference options for calculating the
scalar values on each grid point: a kernel density estimation (KDE) or a distance
field.
For the distance field, the scalar values on the regular grid can simply be taken

to be the distance to the closest point in the point cloud. In effect, this will yield
very small values for points with nearby neighbors, whereas the KDE will yield the
largest values in regions of high density. Subsequently, in this document we only
report on experiments using density.

Resulting sum sampled
at regular intervals

D
en

si
ty

 fu
nc

tio
n

0.
00

0.
05

0.
10

0.
15

-5 0 5 10

Input 1-D point cloud

Gaussian curves with
global bandwidth

Fig. 1 Gaussian kernel density estimate. A Gaussian of a certain bandwidth is centered at each
point. The Gaussians are added and the purple curve is the resulting probability distribution that is
estimated from the samples. Image taken from Wikipedia

The scalar values for the KDE are calculated as follows: We construct identical
Gaussian distributions centered at each point in the point cloud. A continuous scalar



Implementing Persistence-Based Clustering of Point Clouds in TTK 5

function 𝑓 : R𝑑 → R defined on the ambient space can be constructed by taking
the sum of all of the Gaussian distributions. The standard deviation or width of the
Gaussians is denoted as the bandwidth, which is a parameter the user may choose.
The value of the output scalar field for a particular vertex in the regular grid is
determined to be the value of 𝑓 at that point. See Figure 1 for a graphic explanation.

Fig. 2 The input to ScalarFieldFromPointCloud on the left, the output scalar field in the middle
when using the Gaussian KDE option, and the output scalar field on the right when using the
distance field option. For the KDE, the colour map is red at locations with a high density of points,
and blue in sparse regions; in the distance field, the colour map is red far away from the points and
blue near the points.

4.1 Parameter Setting

We also implemented a feature that automatically estimates what the bandwidth
should be. For each point in the point cloud, we calculate the distance to the 𝑘−th
closest neighbor. The parameter 𝑘 is an integer, and we estimate it as follows

𝑘 = (0.587 · 𝑛4/5)1/𝑑

and then rounding 𝑘 up. 𝑛 is the number of points in the point cloud, 𝑑 is the
dimension of the data (currently we allow 𝑑 = 2 and 𝑑 = 3). This method is modified
fromEquation 19 of [23] to include the 1/𝑑 scaling to the 𝑛4/5 term. Finally, themean
distance to the 𝑘−th closest neighbor for every point in the point cloud is taken to
obtain the final bandwidth which is used. This method of bandwidth selection can be
used in ScalarFieldFromPointCloud module by selecting the “Automatic Bandwidth
for KDE” option in ParaView.
We also considered a method that uses adaptively-sized bandwidths for the Gaus-

sian kernels, proportional to the 𝑘-th nearest neighbor [7]. When exploring this
variation, we found that the least persistent clusters would have an even smaller per-
sistence with this algorithm, making it likely for PersistenceSimplification module
to discard them as noise.



6 Ryan Cotsakis, Jim Shaw, Julien Tierny, and Joshua A. Levine

5 Persistence-Based Clustering

We briefly review the key concepts we used in persistent homology, for a full
introduction we recommend Edelsbrunner and Harer [11]. Given a scalar field,
𝑓 : R𝑑 → R, persistent homology can be used to study the evolution of the sublevel
sets 𝑓 −1 (−∞, 𝑎] for every real value 𝑎. Intuitively, as one sweeps through increasing
values of 𝑎, the connectivity of the sublevel sets will change, and persistent homology
helps to gauge both when and what types of changes occur. Specifically, one can
observe when new components are created and destroyed, and how long (in terms of
values for 𝑎) they exist. Such events will occur at values for 𝑎 which correspond to
critical points of 𝑓 . These events can be grouped into what are commonly referred
to as persistence pairs that correspond to a pair of critical points. For a persistence
pair 𝑐𝑖 and 𝑐 𝑗 such that 𝑓 (𝑐𝑖) < 𝑓 (𝑐 𝑗 ), we define the persistence as 𝑓 (𝑐 𝑗 ) − 𝑓 (𝑐𝑖),
which corresponds to the span of function values for which the corresponding feature
was present. The persistence diagram embeds these pairs into a useful tool for data
analysis, as it describes all such pairs and conveniently arranges them so that pairs
with higher persistence are made prominent.
Given the persistent diagram, a common task to filtering such features is to select

a persistence threshold and retain all pairs whose persistence is above the threshold.
The second module we implemented, PersistenceSimplification, performs this form
of persistence simplification on an input scalar field. In our setting, simplification
prepares the scalar field for topological segmentation and ultimately, clustering the
point cloud. Tools for persistence simplification already exist in TTK, but our module
encapsulates this process so as to make it easier for an end user. Specifically, our
new module relies components from two existing modules: FTMTreePP [17] (which
computes a merge tree that can be used to construct the persistence threshold for
each persistence pair) and TopologicalSimplification [28] (which is used to compute
a new, simplified scalar field that preserves the persistence pairs that are above
threshold).
Previously, in TTK, a user would have to separately compute the persistence

diagram, use thresholds to select a set of persistence pairs to preserve, and then run
TopologicalSimplification to produce a simplified field. Our new module combines
these features into a single module. First, the scalar field is given to the FTMTreePP
object, and the persistence pairs are computed. The pairs are then sorted based on
their persistence, and then a persistence threshold is decided based on user selected
parameters (including automatic selection). Finally, TopologicalSimplification is
called using the pairs with sufficiently high persistence as constraints on the input
scalar field. Our module then computes this simplified field and returns it as output.
Thus, unlike the separate components that exist in TTK, this module starts with a
scalar field and produces a new, simplified one with no intermediate steps, greatly
simplifying the process of simplification.



Implementing Persistence-Based Clustering of Point Clouds in TTK 7

5.1 User Options

The PersistenceSimplification module makes this process easy by not exposing the
persistence diagram to the user nor requiring manual pair selection. Instead, the
user is given the option to have PersistenceSimplification choose which points are
sufficiently persistent automatically as described below. Nevertheless, we consider
a number of use cases for the PersistenceSimplification module. Although we are
focused on clustering applications, we have made the module as versatile as possi-
ble. The user can override the automatic threshold by interacting with the GUI in
ParaView to choose various threshold options:

• The user has the option to manually threshold which persistence pairs (min-
saddle, max-saddle, or both) are used to simplify the scalar field based on a
known persistence threshold.

• Alternatively, if a threshold is not known, the user can instead threshold based on
the number of pairs they would like to simplify with. The most persistent points
will be chosen. This is conceptually similar to setting the number of clusters, 𝑘 ,
in k-means.

In addition the user can choose to simplify the scalar field using the maximum-
saddle pairs and the minimum-saddle pairs separately, or both together. For density-
based clustering, we expect maxima to delineate centroids for clustering, but this
module provides more flexibility capabilities to be used in other settings too.

Fig. 3 GUI for PersistenceSimplification. By checking “Separate Max/Min", the user may select
minimum-saddle pairs and maximum-saddle pairs in different ways. By ticking “Use Min/Max
Pairs" the module will choose to retain minimum/maximum-saddle pairs. Since “Threshold Min
Pairs by Number" is specified, we can choose the number of minimum-saddle pairs to retain.
Alternatively, since “Threshold Max Pairs by Number" is not specified, we retain maximum-saddle
pairs by thresholding persistence instead.



8 Ryan Cotsakis, Jim Shaw, Julien Tierny, and Joshua A. Levine

5.2 Automatic Parameter Setting

We developed our automatic threshold mechanism based on the concept of find-
ing large jumps in persistence that separate topological noise (with relatively low
persistence) from topological signal (with relatively high persistence). We define
such jumps by first sorting all pairs by their index and looking for locations where
the tangent of the curve does a poor job of predicting the persistence of the next
highest pair, relative to how much this curve increases overall. For an illustration,
see Figure 4.
Specifically, let 𝑝𝑛 be the persistence of the most persistent critical pair in our

dataset. To identify gaps automatically, we examine the persistence of each pair in
increasing order. Let 𝑎 = 0.2 and 𝑏 = 0.025 be two fitting parameters (𝑎 describes
the exponential growth in persistence pairs and 𝑏 weights relative to the maximum).
For a critical pair with persistence 𝑝0, we ask if (1) the next most persistent pair has
persistence greater than (1 + 𝑎)𝑝0 + 𝑏𝑝𝑛 and if (2) the pair after that has persistence
greater than (1 + 2𝑎)𝑝0 + 2𝑏𝑝𝑛. If the answer to both questions is yes, then the
persistence threshold is determined to be (1 + 𝑎)𝑝0 + 𝑏𝑝𝑛. If the answer to either
question is no, then we remove the initial pair and begin the analysis again on the
next pair, until a persistence threshold is decided.

Fig. 4 Automatic persistence thresholding. Each black point is a critical point pair.We sort the pairs
by persistence. We assume the noise assumes an exponential shape. (𝑎 · 𝑝0 + 𝑏 · 𝑝𝑛) (𝑘 − 𝑘0) + 𝑝0
is the tangent line to the exponential plus some slope 𝑏 · 𝑝𝑛, where 𝑝𝑛 is the persistence of the
most persistent critical pair. The algorithm essentially looks point by point to see if the next point
is above this green line. If the next two points lie above the line, then the all further points are
persistent enough.

This progressive approach is based on the observation that that noisy persistent
pairs fit an exponential function quite well. Thus, the two parameters we select
model this process. Specifically, 𝑎 is chosen to be the parameter that describes the
exponential growth of persistence in Figure 4. The parameter 𝑏 is chosen as a value



Implementing Persistence-Based Clustering of Point Clouds in TTK 9

that captures discontinuities in these curves. Ideally, one would directly estimate
𝑎 and 𝑏 using data fitting, or let the user vary them. As heuristics, we found they
performed quite well for our data even with fixed parameters.

6 Experimental Results

We test the effectiveness of our automatic parameter selection technique and ana-
lyze where it fails. For the following experiments, we only cluster with parameters
selected through our automatic selection technique. We used a collection of different
datasets and benchmarks. For evaluating automatic feature detection efficacy, we
used the Ultsch’s Fundamental Clustering Problems Suite (FCPS) [29]1 and Fränti
and Sieranoja’s k-means clustering testing suite [16]2. For comparisons against other
clustering methods, we evaluated on the scikitlearn clustering datasets [25]3.

6.1 Automatic Feature Detection

Results for our clustering method with automatic parameter selection are shown in
Figures 5 and 6. On the two k-means datasets, our method was quite effective at
separating individual clusters of both different sizes and shapes.

Fig. 5 Our automatic persistence clustering, applied to two datasets from the k-means clustering
suite. Left: dataset S4, Right: dataset A3. Each colour indicates a different cluster, as labeled by our
algorithm.

1 Downloaded from https://www.uni-marburg.de/fb12/arbeitsgruppen/datenbionik/data
2 Downloaded from http://cs.joensuu.fi/sipu/datasets/
3 Extracted directly from sklearn.datasets



10 Ryan Cotsakis, Jim Shaw, Julien Tierny, and Joshua A. Levine

For the FCPS datasets we chose, our technique encountered additional challenges
that stem from the automatic selection of persistence thresholds. While generally
reasonable, we found our thresholds to produce a few additional clusters than neces-
sary, particularly for the TwoSuns (we end up with 4 instead of 2 clusters) and Lsun
(we end up with 5 instead of 3 clusters). Note that if we manually set the number
of clusters to the appropriate number, or method produced correct clusterings for
both. The Wingnut dataset proved a bit challenging when the data sparsity made it
challenging to separate the top from the bottom, as shown in the few points that are
not separated well. We discuss this issue further in Section 6.2.

Fig. 6 Our automatic persistence clustering, applied to four datasets from FCPS. From left-to-right,
we evaluated the TwoSuns, Target, Lsun, and Wingnut datasets. Each colour indicates a different
cluster, as labeled by our algorithm.

6.2 Comparison Against Other Clustering Methods

We also evaluated our clustering method against a variety of other techniques4, as
shown in Figure 7. Note that the data generation process in scikitlearn involves
randomness, which explains the minor discrepancies between Figure 7 and figures
on their website.
In the datasets, we are given the ground truth for what the clusters should be. This

means we can apply the Fowlkes-Mallows score for clustering [15]. The Fowlkes-
Mallow score is a goodness of clustering score from 0 to 1, with 1 being a perfect
clustering and smaller values being bad clusterings. We have labeled each method
and each dataset with a Fowlkes-Mallows score and summed up the scores for all
datasets and each algorithm in Table 1.
All algorithms in Figure 7 except ours which is outlined in red and denoted

“Persistence" needs to have parameters specified. For these other algorithms, we used
the same parameters as in scikit-learn.org/stable/modules/clustering.html, which
were picked to perform well on these datasets. The best algorithms according to the

4 See scikit-learn.org/stable/modules/clustering.html for information on the clustering methods we
compared to



Implementing Persistence-Based Clustering of Point Clouds in TTK 11

Fig. 7 A comparison of clustering methods. Each colour indicates a different labeling according
to the algorithm. Our method, “Persistence", is outlined in red.

K-Means Affinity Mean Shift Spectral Ward Agglom. DBSCAN Birch Gauss. Mix Persistence
Circles 0.50 0.36 0.42 1.0 0.66 1.0 1.0 0.51 0.50 1.0
Moons 0.74 0.67 0.77 1.0 1.0 1.0 1.0 0.57 0.75 1.0
Varied Density 0.87 0.88 0.90 0.96 0.95 0.95 0.75 0.74 0.98 0.96
Anisotropic 0.73 0.74 0.75 0.97 0.79 0.69 0.98 0.72 1.0 1.0
Blobs 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
No Structure 0.58 0.50 0.71 0.58 0.59 0.99 1.0 0.59 0.58 0.77
Sum of Scores 4.42/6.0 4.15/6.0 4.55/6.0 5.51/6.0 4.99/6.0 5.63/6.0 5.73/6.0 4.13/6.0 4.81/6.0 5.73/6.0

Table 1 The Fowlkes-Mallows score, a metric for goodness of clustering, for the corresponding
algorithm (column) and dataset (row). The metric ranges from 0 to 1, with 0 being a bad clustering
and 1 being a perfect clustering. The datasets correspond in order to the datasets in Figure 7.

sum of scores is Persistence and DBSCAN. DBSCAN, however, does not classify
all points as seen by the black outliers in the figure.
In Figure 7 we see that the only data set for which our automatic clusteringmethod

fails drastically is the last data set on the bottom row, which has only 1 cluster. The
data itself is not ideal for our method when compared to the other clusters in Figure 7.
Particularly, it suffers from the fact that it is sampled from a uniform distribution on
a square and thus there are no major topological variations in the resulting density
field. This behavior is also byproduct of estimating density by summed Gaussians,
which would naturally weight dense areas higher than sparse areas. As a result, the
one singular cluster has a large area and is ultimately undersampled.
These two conditions (uniform sampling and summing Gaussians) result in

“patchy-ness” in the density estimation. Figure 8 illustrates the clustering proce-
dure for the final data set. Despite the relatively low quality density estimation, our
automatic threshold for persistence almost worked. In this test, 𝑎 in the automatic
persistence algorithm was set to 0.2. In reality, by fitting an exponential curve to



12 Ryan Cotsakis, Jim Shaw, Julien Tierny, and Joshua A. Levine

the data, we get that 𝑎 should be 0.33 instead. This leads to a more appropriate
clustering.

Fig. 8 Clustering of a data set which is sampled from a uniform distribution on a square. Top Left
- Original data set. Top Right - Kernel density estimation; red is high, blue is low. Bottom Left
- Automatic persistence thresholding, with the red line representing the persistence at which we
threshold. Each black dot represents a maximum-saddle pair. We order the pairs by persistence.
The point just above the red threshold lies above the green line, hence the algorithm terminates.
Bottom Right - Segmented domain, with each segment representing a cluster. The red spheres are
maxima, blue minima, and yellow saddle.

It turns out that the TwoSuns datasets in Figure 6 fails to automatically cluster for
the same reasons as above. The same patchiness in the scalar field results leading to
an incorrect thresholding. Interestingly, fitting an exponential curve to the persistence
curve yields 𝑎 = 0.53, which we found would indeed lead to the correct two clusters.
It seems for both data sets that the bandwidth is too small for the density es-

timation. However, we noticed that the automatic bandwidth selection on the data
sets in Figure 5 produced bandwidths that could not be increased without yielding
incorrect clusterings. This observation points out some of the challenges with setting
parameters, but in general our automatic method worked well as a heuristic for the
data sets we experimented with.



Implementing Persistence-Based Clustering of Point Clouds in TTK 13

7 Discussion

Our work demonstrates the effectiveness of using scalar field topology for clustering
point clouds. Moreover, we also discussed implementing this technique in TTK,
creating new modules to both ease the process for a user as well as designing user
heuristics for automatically specifying parameters. In general, clustering is often
an extremely useful first step in the data analysis pipeline, but as the problem is
ill-constrained there is no single solution that works in all settings.
Our method allows for both distance fields and KDE to building the scalar field

from point clouds. While KDE is a natural choice, its use does restrict the clustering
approach to be sensitive to the density of the input point cloud, similar to DBSCAN.
Of course, there is further control in terms of the persistence and other user-defined
parameters. In some contexts, this control is desirable, but we leave it to future work
to explore what other scalar fields might be better suited in different contexts.
On the computational side, we made an up front choice to limit our approach to

working with point clouds in low-dimensions. This report demonstrates the efficacy
on mainly two-dimensional datasets, but we have also experimented with both three-
dimensional point clouds and point clouds sampled from surfaces embedded in three
dimensions. Our results do extend, although our method for automatically specifying
parameters in both modules does have a dependence on the underlying dimension
of the data. We leave it to future work to specify these parameters (𝑘 , 𝑎, and 𝑏) in
terms of the dimension of the data. For higher dimensional data, utilizing a similar
pipeline is also work in progress, but it has significant challenges with visualizing
the resulting clustering. One method that shows promise is to first project the input
data to a lower dimensional manifold, as is frequently done in other settings.
Since we sample our scalar field on a triangulated grid, the computational work-

load will ultimately be dependent on the resolution of this grid. TTK is optimized for
fast access on triangulations, which is advantageous compared to other alternative
simplicial complexes we could use such as Rips complexes. While we require a
sampling density sufficient for capturing the separation between clusters, it would be
interesting to consider specifying a non-uniform triangulation that adapts to the data
so as to reduce the computational burden. It is future work as how best to balance
clustering accuracy with computational cost.
Finally, our implemented modules are available for download, as well as the

ParaView state files used to produce the results prsesented in this paper 5.

Acknowledgements This work is partially supported by the European Commission grant ERC-
2019-COG “TORI” (ref. 863464). This material is based upon work supported by the U.S. De-
partment of Energy, Office of Science, Office of Advanced Scientific Computing Research, under
Award Number(s) DE-SC-0019039.

5 https://github.com/bluenote-1577/ttk



14 Ryan Cotsakis, Jim Shaw, Julien Tierny, and Joshua A. Levine

References

1. Ahrens, J., Geveci, B., Law, C.: Paraview: An end-user tool for large-data visualization. The
Visualization Handbook pp. 717–731 (2005)

2. Beksi, W.J., Papanikolopoulos, N.: 3d point cloud segmentation using topological persistence.
In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 5046–5051.
IEEE (2016)

3. Beksi, W.J., Papanikolopoulos, N.: Signature of topologically persistent points for 3d point
cloud description. In: 2018 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1–6. IEEE (2018)

4. Beksi, W.J., Papanikolopoulos, N.: A topology-based descriptor for 3d point cloud modeling:
Theory and experiments. Image and Vision Computing 88, 84–95 (2019)

5. Bertrand, G.: On topological watersheds. Journal ofMathematical Imaging andVision 22(2-3),
217–230 (2005)

6. Beucher, S.: Watersheds of functions and picture segmentation. In: ICASSP’82. IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, vol. 7, pp. 1928–1931. IEEE
(1982)

7. Breiman, L., Meisel, W., Purcell, E.: Variable kernel estimates of multivariate densities. Tech-
nometrics 19(2), 135–144 (1977)

8. Chazal, F., Guibas, L.J., Oudot, S.Y., Skraba, P.: Scalar field analysis over point cloud data.
Discrete & Computational Geometry 46(4), 743 (2011)

9. Chazal, F., Guibas, L.J., Oudot, S.Y., Skraba, P.: Persistence-based clustering in riemannian
manifolds. Journal of the ACM (JACM) 60(6), 41 (2013)

10. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE
Transactions on Pattern Analysis & Machine Intelligence 24(5), 603–619 (2002)

11. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathemat-
ical Society (2009)

12. Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-smale complexes for piecewise
linear 3-manifolds. In: Proceedings of the nineteenth annual symposium on Computational
geometry, pp. 361–370. ACM (2003)

13. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification.
In: Proceedings 41st Annual Symposium on Foundations of Computer Science, pp. 454–463.
IEEE (2000)

14. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in
large spatial databases with noise. In: Proceedings of Knowledge Discovery and Data Mining,
pp. 226–231 (1996)

15. Fowlkes, E.B., Mallows, C.L.: A method for comparing two hierarchical clusterings. Journal
of the American statistical association 78(383), 553–569 (1983)

16. Fränti, P., Sieranoja, S.: K-means properties on six clustering benchmark datasets. Applied
Intelligence 48(12), 4743–4759 (2018)

17. Gueunet, C., Fortin, P., Jomier, J., Tierny, J.: Task-based augmented merge trees with fibonacci
heaps. In: 2017 IEEE 7th Symposium on Large Data Analysis and Visualization (LDAV), pp.
6–15. IEEE (2017)

18. Koontz, W.L.G., Narendra, P.M., Fukunaga, K.: A graph-theoretic approach to nonparametric
cluster analysis. IEEE Trans. Computers 25(9), 936–944 (1976)

19. Lloyd, S.: Least squares quantization in PCM. IEEE transactions on information theory 28(2),
129–137 (1982)

20. Moon, C., Giansiracusa, N., Lazar, N.A.: Persistence terrace for topological inference of point
cloud data. Journal of Computational and Graphical Statistics 27(3), 576–586 (2018)

21. Oesterling, P., Heine, C., Janicke, H., Scheuermann, G., Heyer, G.: Visualization of high-
dimensional point clouds using their density distribution’s topology. IEEE Transactions on
Visualization and Computer Graphics 17(11), 1547–1559 (2011)

22. Oesterling, P., Heine, C., Weber, G.H., Scheuermann, G.: Visualizing nd point clouds as
topological landscape profiles to guide local data analysis. IEEE transactions on visualization
and computer graphics 19(3), 514–526 (2012)



Implementing Persistence-Based Clustering of Point Clouds in TTK 15

23. Orava, J.: K-nearest neighbour kernel density estimation, the choice of optimal k. Tatra
Mountains Mathematical Publications 50(1), 39–50 (2011)

24. Sander, J., Ester, M., Kriegel, H.P., Xu, X.: Density-based clustering in spatial databases: The
algorithm gdbscan and its applications. Data mining and knowledge discovery 2(2), 169–194
(1998)

25. Scikitlearn: Clustering. https://scikit-learn.org/stable/modules/clustering.html (2019). [On-
line; accessed 02-January-2019]

26. Thom, R.: Sur une partition en cellules associée à une fonction sur une variété. COMPTES
RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES
228(12), 973–975 (1949)

27. Tierny, J., Favelier, G., Levine, J.A., Gueunet, C., Michaux, M.: The Topology ToolKit. IEEE
Trans. on Visualization and Computer Graphics (Special Issue IEEE VIS 2017: SciVis) 24(1),
832–842 (2018)

28. Tierny, J., Pascucci, V.: Generalized topological simplification of scalar fields on surfaces.
IEEE transactions on visualization and computer graphics 18(12), 2005–2013 (2012)

29. Ultsch, A.: Clustering with SOM: U*C. Proc. Workshop on Self-Organizing Maps pp. 75–82
(2005)

30. Von Luxburg, U.: A tutorial on spectral clustering. Statistics and computing 17(4), 395–416
(2007)


