Contour Forests: Fast Multi-threaded Augmented Contour Trees

Pierre Fortin®
Sorbonne Universites,
UPMC Univ Paris 06,

CNRS, LIP6 UMR 7606,
France.

Charles Gueunet*
Kitware SAS
Sorbonne Universites,
UPMC Univ Paris 06,
CNRS, LIP6 UMR 7606,
France.

ABSTRACT

This paper presents a new algorithm for the fast, shared memory
multi-threaded computation of contour trees on tetrahedral meshes.
In contrast to previous multi-threaded algorithms, our technique
computes the augmented contour tree. Such an augmentation is
required to enable the full extent of contour tree based applications,
including for instance data segmentation. Our approach relies on
a range-driven domain partitioning. We show how to exploit such
a partitioning to rapidly compute contour forests. We also show
how such forests can be efficiently turned into the output contour
tree. We report performance numbers that compare our approach to
a reference sequential implementation for the computation of aug-
mented contour trees. These experiments demonstrate the run-time
efficiency of our approach. We demonstrate the utility of our ap-
proach with several data segmentation tasks. We also provide a
lightweight VTK-based C++ implementation of our approach for
reproduction purposes.

1 INTRODUCTION

As scientific data-sets become more intricate and larger in size, ad-
vanced data analysis algorithms are needed for their efficient vi-
sualization and interactive exploration. For scalar field visualiza-
tion, topological analysis techniques have shown to be practical so-
lutions in various contexts by enabling the concise and complete
capture of the structure of the input data into high-level topologi-
cal abstractions such as contour trees [8]], Reeb graphs [31} 15} [37]],
or Morse-Smale complexes [21} [13]]. Such topological abstractions
are fundamental data-structures that enable the development of ad-
vanced data analysis, exploration and visualization techniques, in-
cluding for instance: small seed set extraction for fast isosurface
traversal [39] 9], feature tracking [34], data-summarization [30],
transfer function design for volume rendering [40], similarity esti-
mation [36], or application-driven segmentation and analysis tasks
[25 23117, 120L 22].

However, with the ongoing development of computational re-
sources on the one hand and of acquisition devices on the other,
the resolution of the geometrical domains on which scalar fields are
defined is continuously increasing. This resolution increase yields
several technical challenges for topological data analysis, including
that of computation time efficiency. In particular, to enable truly
interactive exploration sessions, highly efficient algorithms are re-
quired both for the computation of topological abstractions as well
as for their interactive manipulation (i.e. topological simplification
for instance). A natural direction towards the improvement of the
time efficiency of topological data analysis is parallelism, as all
commodity hardware now embeds processors with multiple cores.

*E-mail: charles.gueunet@kitware.com
TE-mail: pierre.fortin@lip6.fr

*E-mail: julien jomier @kitware.com
SE-mail: julien.tierny @lip6.fr

Julien Tierny®
Sorbonne Universites,
UPMC Univ Paris 06,

CNRS, LIP6 UMR 7606,
France.

Julien Jomier*
Kitware SAS

However, most topological analysis algorithms are originally intrin-
sically sequential as they often require a global view on the data.

Regarding the contour tree — a fundamental topology-based data
structure in scalar field visualization — several algorithms have been
proposed for its parallel computation [29] 26, [1]. However, these
algorithms only compute non-augmented contour trees [8], trees
that only represent the connectivity evolution of the level-sets, and
not the corresponding data-segmentation (i.e. the arcs are not aug-
mented with regular vertices). While such non-augmented trees en-
able some of the traditional visualization applications of the contour
tree, they do not enable them all. For instance, they do not readily
support seed set extraction for fast isosurface extraction or topol-
ogy based data segmentation. In both examples, additional post-
processing will be needed to support these applications. Moreover,
fully augmenting in a post-process non-augmented trees is a non
trivial task, for which no linear-time algorithm has ever been docu-
mented to the best of our knowledge.

This paper addresses this problem by presenting a fast, shared
memory multi-threaded algorithm for the computation of aug-
mented contour trees on tetrahedral meshes. Such a tree augmenta-
tion makes our output data-structures generic application-wise and
enables the full extent of contour tree based applications, includ-
ing data segmentation. Extensive experiments demonstrate the ef-
ficiency of our approach in comparison to a reference sequential
implementation (libtourtre [14]), despite the strong memory-bound
aspect of the graph traversal tasks [2] involved in augmented con-
tour tree computation , and despite other limitations that we de-
tail. We illustrate the utility of our approach with specific use cases
for the interactive exploration of hierarchies of topology-based data
segmentations that were enabled by our algorithm. We also provide
a lightweight VTK-based C++ reference implementation of our ap-
proach for reproduction purposes.

1.1 Related work

The notion of contour tree has first been introduced in Computer
Science by Boyell and Ruston [6]. Algorithms for their efficient
computation have first been investigated for 2D domains [39], then
for 3D domains [35)] and last for domains of arbitrary dimension
[8], with an algorithm that is simple to implement, efficient in prac-
tice and with optimal time complexity. In particular, this algorithm
allows for the computation of both augmented and non-augmented
contour trees. An open source reference implementation (libtourtre
[[14]) of this algorithm is provided by Scott Dillard. Chiang et al.
[10] later presented an output-sensitive algorithm for the compu-
tation of non-augmented contour trees based on monotone paths,
where the arcs of the intermediate trees (called join and split trees,
see Sec. [2) were evaluated by considering monotone paths connect-
ing the critical points of the input scalar field. Applications of the
contour tree in data analysis and visualization include small seed set
extraction for isosurface traversal [39], topological simplification of
isosurfaces [9], feature tracking [34]], transfer function design for
volume rendering [40], similarity estimation [36], or application-
driven segmentation and analysis tasks [7]. Note that all of the ap-
plications mentioned above require the augmented contour tree as
they rely on the identification of the sets of regular vertices mapping

() (®) ©

Figure 1: Topology driven hierarchical data segmentation. (a) Input
scalar field f (color gradient), level-set (light green) and critical points
(blue: minimum, white: saddle, green: maximum). (b) Contour tree
of f and its corresponding segmentation (arcs and their pre-images
by ¢ are shown with the same color). (c) Contour tree of f and its
corresponding segmentation, simplified according to persistence.

to each arc of the contour tree, to find isosurface traversal seeds, to
compute geometrical measures on the volume regions correspond-
ing to each arc of the contour tree, to measure overlaps between
such regions, to compare geometrical measures on such regions or
to simply extract these regions for visualization purpose.

Pascucci and Cole-McLaughlin introduced the first parallel algo-
rithm for contour tree computation [29]. However, this algorithm
does not compute contour trees that are augmented with regular
vertice Moreover, the algorithm proceeds with a hierarchical
domain decomposition. This means that fewer and fewer threads
will be active along the execution, eventually finishing with a non-
negligible sequential pass. Also, while this paper describes a par-
allel algorithm for the computation of intermediate trees (the join
and split trees, see Sec. |Z|), the authors still use a sequential pass to
combine these two trees into the final output contour tree.

Maadasamy et al. [26] introduced a multi-threaded variant of
the output-sensitive algorithm by Chiang et al. [[T0]], which results
in good scaling performances on tetrahedral meshes. However, we
note that, in practice, the sequential version of this algorithm is up
to three times slower than the reference implementation (libtourtre
[T4]) of the algorithm by Carr et al. [8] (see Tab. 1 in [26]). This
only yields eventually speedups between 1.6 and 2.8 with regard to
libtourtre [14]] on a 8-core CPU [26]. We suspect that these mod-
erate speedups over libtourtre are due to the lack of efficiency of
the sequential algorithm based on monotone paths by Chiang et al.
[10] in comparison to that of Carr et al. [§]. Indeed, from our expe-
rience, although the extraction of the critical points of the field is a
local operation [4]], we found in practice that its overall computation
time is often larger than that of the contour tree itself. Moreover,
this algorithm triggers monotone path computations for each sad-
dle point [[10], even if it does not yield branching in the contour tree
(which induces unnecessary computations). Note also that the ap-
proach by Maadasamy et al. only parallelizes the construction
of the join and split trees and not their combination into the final
contour tree, which is done sequentially. Finally, since it connects
critical points through monotone paths, this algorithm does not visit
all the vertices of the input mesh. Thus it cannot provide a contour
tree-based data segmentation and does not produce an augmented
contour tree. Acharya and Natarajan [1] specialized and improved
this approach for the special case of regular grids. In this paper, we
focus however on tetrahedral meshes because of the genericity of

!Pascucci and Cole-McLaughlin use the term “augmented” with a dif-
ferent meaning than in the current paper. Here, it refers to the augmentation
of the arcs with regular vertices (as introduced by Carr et al. [8]) while they
refer to an evaluation of the Betti numbers of the level sets.

this mesh representation (any mesh can be triangulated).

Morozov and Weber 28] and Landge et al. [24] pre-
sented three approaches for contour tree-based visualization in a
distributed environment, with minimal inter-node communications.
However, these approaches focus more on the reduction of the com-
munication between the processes than on the efficient computation
on a single shared memory node as we do here with the target of an
efficient interactive exploration in mind.

1.2 Contributions

This paper presents the following new contributions:

1. a fast, shared memory multi-threaded algorithm for the com-
putation of augmented contour trees on tetrahedral meshes;

2. a lightweight VTK-based C++ reference implementation of
our approach for reproduction purposes.

2 PRELIMINARIES

This section briefly describes our formal setting and presents an
overview of our approach. An introduction to Topological Data
Analysis can be found in [16]].

2.1 Background

The input to our algorithm is a piecewise linear (PL) scalar field
[+ # — R defined on a simply-connected PL d-manifold ..
Without loss of generality, we will assume that d = 3 (tetrahedral
meshes) in most of our discussion, although our algorithm, as it ex-
tends Carr’s, supports manifolds of arbitrary dimension. The scalar
field f is provided on the vertices of .# and is linearly interpolated
on the simplices of higher dimension. We will additionally require
that the restriction of f to the vertices of .# is injective (which
can be easily enforced with a mechanism inspired by simulation of
simplicity [18])).

A level-set is defined as the pre-image of an isovalue i € R onto
M through f: () ={pec .« | f(p)=i} (Fig.. Each con-
nected component of a level-set is called a contour. In Fig. [T(B)]
each contour of the level-set of Fig. [[(a)] is shown with a distinct
color. Let f~!(f(p)), be the contour that contains the point p. The
Reeb graph [32] is a 1-dimensional simplicial complex (Fig. [I(b))
that is defined as the quotient space Z(f) = .# | ~ by the equiva-
lence relation p; ~ ps:

{ flp1) = f(p2)
p2 €N (p1)p

Note that f can be decomposed into f = yo ¢ where ¢ : 4 —
Z(f) is a contour retraction (i.e. a continuous map that re-
tracts each contour to a point such that the restriction of such a map
to its image is the identity) and where v : Z(f) — R is a continu-
ous function that maps points of Z(f) to their f values. Note that
the pre-image by ¢ of Z(f) induces a complete partition of ..
In particular, the pre-image ¢ ~!(Z;) of a 1-simplex £; € Z(f) is
guaranteed by construction to be connected. This latter property is
at the basis of the usage of the Reeb graph in visualization as a data
segmentation tool (Fig. [[(b)) for feature extraction or isosurface
traversal acceleration. In practice, ¢ ! is represented explicitly by
maintaining, for each 1-simplex X € Z(f) (i.e. for each arc), the
list of regular vertices of ./ that retracts to £. Moreover, since the
Reeb graph is a simplicial complex, persistent homology concepts
[T7]] can be readily applied to it by considering a filtration based on
y. Intuitively, this progressively simplifies Z(f), by iteratively re-
moving its shortest arcs, as described in further details in [31]]. This
yields hierarchies of Reeb graphs that are accompanied by hierar-
chies of data segmentations, that the user can interactively explore

in practice (see Fig.[T(c)).

' (

Figure 2: Algorithm overview on the height function f of a volume
. with two threads. (a) Input scalar field f (color gradient) with its
critical points (blue: min, white: saddle, green: max). The domain is
split into two partitions ; and &; of roughly equal size correspond-
ing to the pre-images of contiguous intervals .#; and .#; of f(.#).
The interface level-set between such two partitions is shown in red.
(b) The augmented contour trees %'(f); (top) and % (f); (bottom) are
constructed in parallel for each partition. These local trees can be
easily and efficiently stitched together to form the output augmented
contour tree (right).

(a) b)

As discussed by Cole-McLaughlin et al. [I1]], the construction
of the Reeb graph can lead to the removal of 1-cycles, but not to the
creation of new ones. This means that the Reeb graphs of PL scalar
fields defined on simply-connected domains are loop-free. Such a
Reeb graph is called a contour tree and we will note it € (f). Con-
tour trees can be computed efficiently by considering the combina-
tions of two trees called join and split trees [8]. Given an isovalue
i € R, the sub-level set L™ (i) is defined as the pre-image of the open
interval (—eo,i] onto .# through f: L~ (i) = {p € .# | f(p) <i}.
The join tree, noted _Z (f), is a 1-dimensional simplicial complex
obtained by contracting each connected component of a sub-level
set to a point (similarly to the Reeb graph). The O-simplices of
7 (f) that are attached to only one 1-simplex are either the root of
this tree (corresponding to the global maximum of f) or its leaves
(corresponding to the local minima of f). All other O-simplicies
(which induce branching in the tree) correspond to saddles of f that
join distinct connected components of L™ (i). The split tree . (f) of
f is defined symmetrically, by considering the sur-level sets L™ (i):

L*(i)={pe.#|f(p) = i}.
2.2 Overview

Our approach is based on a range-driven partitioning strategy, as
illustrated in Fig. |2} First, given n, threads, the image of the do-
main f(.#) is divided into n;/2 contiguous, non-overlapping in-
tervals .#; that contain (nearly) the same amount of vertices of .#

(Sec.[31):
fll)=AHUAU--- ULy)
looli = |o0l; Vi#j

where |op|; refers to the number of vertices of .# mapping to .%;.
Next, two threads are assigned to each partition %2;, &; being_the
pre-image of the corresponding interval, 2; = f~1(.#%) (Sec.
The two threads then compute the augmented contour tree of the
restriction of the function to its partition (Sec. [3.2), with a variant
of the algorithm by Carr et al. [8]: one thread builds the join tree,
and the other the split treeEl This yields a forest of contour trees:

2Note that n, threads could have been used (one thread per partition), by
building these trees sequentially. However, our experiments showed that it
was less efficient than using two threads per partition.

{€(f)0,C(f)1,..-C(f)n,—1}. Finally, the output contour tree is
retrieved by connecting the trees of the forest along common con-
nected components of partition boundaries (Sec. 3.3).

Despite its simplicity, our range-driven approach exhibits many
advantages. In particular, our strategy enables the computation of
augmented contour trees, since it extends Carr’s algorithm [8]]. Sec-
ond, since the input mesh is split into partitions of roughly equal
size (in terms of vertices), the work load should be well balanced
between the threads. Third, since it is range-driven, our approach
allows for a full computation of the local contour tree within each
partition (join and split tree computations, plus their combination in
the contour tree) while previous approaches systematically delayed
the combination to a post-process pass (implemented in serial). Fi-
nally , since it is range-based, our approach allows for a simple
stitching of the local trees of the forest into the output contour tree,
while previous approaches needed to run a special procedure on the
common boundary of merged partitions [29, 26].

3 ALGORITHM
This section details the algorithms for each step of our approach.

3.1 Domain partitioning

The first step of our approach consists in sorting the vertices of .Z
by increasing function value, which can be efficiently done in paral-
lel 381331 [19]]. This step can be done in O(|op| x log(|op|)) where
|op| is the number of vertices in .. Nex, the sorted list of vertices
is split into n, /2 contiguous sets .Z; of roughly equal size, whose
images correspond to the intervals . described in Eq. Next,
each vertex set Z; is extended into a set 2] with the following
procedure. Let f;- and f;+ be the two extremities of the interval
I I = (fi-, fi+)- The level-sets for the isovalues f;- and f;+ are
called interface level-sets. Let (01);- and (07);+ be the the set of
edges of .# whose image contains f;- and f;+ respectively. The
vertex set &; is extended into &/ by adding the vertices of (o);-
and (0y);+ (red circles, Fig.[3). We call such vertices boundary ver-
rices. Note that with this approach, two adjacent partitions &/ and
.@} will overlap, precisely along the simplices crossed by f;- or fi+
(triangles with red edges, Fig.3).

This strategy guarantees that each connected component of an
interface level-set is captured by the overlaps in between the par-
titions (triangles with red edges, Fig. [3). Therefore, all possible
contours living in the interval .#; are completely captured by 7.
This guarantees that the restriction of the local contour tree (f);
(computed on 27)) to the interval . (in green in Fig. and blue
in Fig.[3(b)) is equal the restriction of the output contour tree €(f)
to .. This property will be of paramount importance to guarantee
an efficient stitching of the contour forest into the output contour
tree (Sec.3.3).

In practice, this expansion procedure is performed efficiently by
visiting in parallel all the edges (o}) of .# and tracking the vertices
of the edges crossing f;- and f;+ for a given interval .#; , in O(|o|)
steps. In particular, each of the n; threads maintains its own list of
boundary vertices, which are merged globally (and sequentially in
practice since this merge implies minor computation times).

3.2 Local computations

The contour tree €(f); of each of the n; /2 partitions &/ is com-
puted by two distinct threads. Note that in practice, the partitions
2] are not copied, but represented implicitly. In particular, the list
of vertices of the initial partition 27; is represented by an interval
in the global sorted list of vertices. The boundary vertices added in
the expansion procedure described in Sec. [3.1] (red circles, Fig. [3)
are represented by two sorted lists of vertices %;- and %;+, repre-
senting the boundary vertices below f;- and above f;+ respectively.

Given a partition &/, its augmented contour tree is computed
with a variant of the algorithm by Carr et al. [8]], for which we

Figure 3: Domain partitioning for a 2D toy example (height function).
(a) Partition £2; (green) with its overlap simplices (red) and its aug-
mented contour tree %(f);. (b) Partition 2; (blue) with its overlap
simplices (red) and its augmented contour tree ¥(f);. The common
region between the two partitions is made of all the triangles con-
taining red edges and being crossed by the interface level-set (black
dashes). (c) The output, stitched, augmented contour tree €'(f).

briefly sketch the main steps here for completeness. This algo-
rithm constructs the join tree ¢ (f) (and symmetrically the split
tree .(f)) by visiting the vertices of the domain in increasing func-
tion value and by keeping track of the connectivity evolution of the
sub-level sets L~ (i) with a Union-Find data-structure [12]]. Given
an input sorted list of vertices, this steps requires O(|c?| x a(|c?|))
steps, where |G| is the number of simplices in the partition P/ and
where o ¢(.) is an extremely slow-growing function (inverse of the
Ackermann function). Next, the join tree _# (f) and the split tree
7 (f) are combined into the output augmented contour tree €(f)
by iteratively removing arcs connected to leaves either in _# (f) or
Z(f) and adding them to € (f) [8]]. This final steps takes a linear
time with the number of arcs in €’ (f) (which is of the same order
of magnitude than |c?| in practice).

Our approach to the local computation of the augmented contour
tree ¢'(f); for each partition &/ only requires a slight modifica-
tion to this algorithm. In particular, when constructing the join tree
Z (f)i, our algorithm first visits the boundary vertices %;- (if any)
in increasing order. Next, it visits the vertices of &7; by traversing
the global sorted vertex list within the interval prescribed by the do-
main partitioning step (Sec.[3.1). Finally, it completes the traversal
by considering the vertices of %;+ (if any) in increasing order. For
each of these three traversals, the join tree construction algorithm
by Carr et al. [8] is applied as-is by the corresponding thread. The
split tree .7 (f); is constructed with a symmetrical pass by the other
thread : %;+, then &; and finally %;-. Once the join and split trees
are constructed, they are combined into the augmented contour tree
€ (f); with the original algorithm [8] by one of the two threads.
This combination does not require parallelization within each par-
tition since its computation time is not significant, and since paral-
lelization already applies among partitions.

3.3 Contour forest stitching

Once the n; threads have finished the computation of each local aug-
mented contour tree €(f);, the resulting forest is stitched into the
final augmented contour tree 4’ (f) with the following procedure.
During the local computation of the contour tree €(f);
(Sec. @), each 1-simplex (each arc) that crosses an interface level
set is added to a list of crossing arcs, noted Z;. This corresponds
in Fig.[3]to the arcs (a,) in Fig. B(a)and (i — n) in Fig.[3(b)|
Then, the stitching procedure consists in visiting sequentially the
list of crossing arcs 2; for each local contour tree € (f);. Given
such an arc g;, its regular vertex v exactly above f;+ (or below f;-)
is identified through dichotomic search (vertex j in Fig.[3(a)). Since

augmented contour trees store the destination of each vertex into the
tree, it is possible to retrieve in constant time the homologous arc a;
from the adjacent tree a) j which contains v. This corresponds to
the arc (h —n) in Fig. Finally, a; is updated to form the union
of the arcs a; and a;. This operation includes the modification of
the higher extremity of a; (to use a;’s instead) as well as the con-
catenation of the two sorted lists of regular vertices (see Fig. B(c)).
Note that the vertex v can belong to multiple partitions. In such a
case, a; will be updated iteratively to form the union of multiple
arcs (a;, aj, ai, etc.), by successively applying this pairwise stitch-
ing in increasing order of function value (i.e. a; and a; will first be
stitched, then the result of this stitching will be stitched with a; and
so on). As discussed in Sec.[d] this final stitching procedure is ex-
tremely fast in practice (hence performed sequantially), since only
a small portions of the arcs are visited (only the crossing arcs) and
since the merging operation is simple (it simply consists in stitching
pairs of arcs across interface level-sets). Note that the simplicity of
this stitching procedure is due to our domain partitioning strategy,
which guarantees that the restriction of a local tree €(f); to the in-
terval .%; is equal to the restriction of ¢'(f) to .%; (Sec.[3.1). Note
that the zipping procedure employed in the streaming Reeb graph
computation algorithm [31]] could also be employed for the stitch-
ing of the local trees. However, this procedure admits a quadratic
time complexity in the number of nodes of €(f), which is pro-
hibitive in our approach, where only sub-quadratic routines have
been used.

4 EXPERIMENTAL RESULTS

In this section, we present practical results obtained with a VTK-
based C++ implementation of our algorithm (provided as additional
material). Experiments were performed on a desktop computer with
an Intel Xeon CPU E5-2630 v3 (2.4 GHz, 8 cores) with 64GB of
RAM. All parallel tests are run with n, = 8 threads for n, = 4 par-
titions.

4.1 Detailed performance results

Table] first presents detailed performance results for various data-
sets. Plasma, Bucky and SF Earthquake are standard data-sets avail-
able at the AIM@SHAPE repository [15]: these are however too
small to fully exploit our 8-core CPU. In fact, with our experimen-
tal setting, even the sort step is slower in parallel than in sequential
for these data-sets (results not shown). This explains the low paral-
lel speedups for such tests.

We thus focus in the following on larger tetrahedral meshes (up-
per part of Tablem) which have been obtained by triangulating reg-
ular grids. For the sake of comparison, these have systematically
been upsampled to 256> vertices. One can first see that the addi-
tionnal Overlap step required to build the %;- and %;+ lists (see
Sec.[3:2)) leads to low overheads. Moreover, the stitching step is ef-
ficiently performed in sequential which results in small run-times.
As far as parallel speedups are concerned, the Elevation data-set is
a synthetic and very simple one that shows good speedups, with
a parallel efficiency of 5.38/8 = 67%. Moving to more complex
data-sets (i.e. resulting in larger contour trees), one can see that we
obtain good or average speedups (parallel efficiencies ranging be-
tween 55% and 40%), except for the Foot data-set which shows a
limited speedup. We will detail these limitations and their causes
in the next sub-section. The scalability of our approach is evalu-
ated with Fig. [d] which presents the evolution of the speedup ob-
tained by our algorithm as a function of the number of threads. The
slope of these curves shows that the scalability of our approach,
similarly to the speedups discussed above, is data-set dependent as
well. In particular, our algorithm seems less scalable for the data-
sets which result in complex output trees (see the third column of
Table|I|which shows the number of arcs per tree). Also, the small-
est slope (nearly constant) is also observed with the Foot data-set,

Table 1: Running time of the different steps of the algorithm (in seconds). |.#| denotes the number of vertices in the data-set, and |€'(f)|4 the

number of arcs in the output contour tree. Overall corresponds to the complete application, including memory allocations, etc.

Data-set |#) |€(f)la | Sequential | Sort Overlap Local trees Stitching | Overall | Speedup
Elevation 82,906,875 1 29.18 | 091 0.18 4.18 0.14 542 5.38
EthaneDiol 82,906,875 29 33.09 | 0.67 0.33 6.64 0.14 7.81 4.37
Combustion 82,906,875 3649 28.04 | 0.61 0.34 6.19 0.15 7.31 3.83
Boat 82,906,875 3235 29.94 | 0.69 0.41 6.17 0.14 7.44 4.02
Jet 82,906,875 4171 26.82 | 0.65 0.36 6.03 0.15 7.21 3.72
Enzo 82,906,875 282800 39.63 | 0.74 1.50 9.48 0.66 12.40 3.20
Foot 82,906,875 844463 18.09 | 0.49 0.99 7.12 1.10 9.72 1.86
Plasma 1,310,720 2851 0.18 | 0.01 0.01 0.06 0.01 0.09 2
Bucky 1,250,235 4377 0.11 | 0.01 0.01 0.05 0.01 0.08 1.38
SF Earthquake 2,067,739 11887 0.19 | 0.01 0.02 0.09 0.02 0.13 1.46

Table 2: Overall running time comparison (in seconds) between the sequential libTourtre implementation (sTourtre), a naive parallel implemen-

tation of libTourtre (pTourtre) and our approach.

Data-set sTourtre | pTourtre Speedup wrt. | Ours Speedup wrt.
sTourtre sTourtre pTourtre
Elevation 20.63 10.07 2.04 5.42 3.81 2.64
EthaneDiol 23.47 13.96 1.68 7.81 3.00 1.79
Combustion 21.26 12.39 1.72 7.31 291 1.70
Boat 23.26 12.52 1.85 7.44 3.13 1.68
Jet 20.60 11.50 1.79 7.21 2.86 1.60
Enzo 32.51 18.07 1.80 | 12.40 2.62 1.46
Foot 13.52 8.40 1.60 9.72 1.39 0.86
Plasma 0.08 0.08 1.00 0.09 0.89 0.89
Bucky 0.07 0.06 1.16 0.08 0.88 0.75
SF Earthquake 0.12 0.10 1.20 0.13 0.92 0.77
Scalabllity]]
e Elevation ——
EthaneDiol —w—
Combustion
5 r Boat
Jet
Enzo —a—
Foot
a 47
3
G o3
2 J
(@) (b)
' 1 5 3 2 o 5 5 g Figure 5: Size difference between two interface level-sets on the Foot

nb threads

Figure 4: Speedups obtained by our algorithm as a function of the
number of threads (one curve per data set).

as further discussed in the next sub-section.

Next, we compare our parallel implementation with the reference
sequential libtourtre implementation in Table 2] Our speedups with
respect to libtourtre range between 2.6 and 3.8 (except for Foot),
which compares favorably (even if the data-sets differ) with the 1.6-
2.8 speedups of Maadasamy et al. [26] on tetrahedral meshes (see
Sec. [I[.I). Note additionally that in contrast to Maadasamy et al.
[26]], our approach computes the augmented contour tree, which

data-set. (a) Interface crossing 1,507,357 edges (blue). (b) Interface
crossing 606,276 edges (green). This difference can lead to load
imbalance between our partitions.

constitutes a more generic and versatile version of the contour tree.
We also added in Table [2] performance results of a naive parallel
implementation of libtourtre which uses a parallel sort and two
OpenMP threads to build independently the join and split trees. Our
parallel algorithm outperforms this naive implementation in all our
test cases with exception of the foot, which further stresses the effi-
ciency of our approach.

Table 3: Partition sizes (in vertices).

Data-set | ideal min max
Elevation 4,194,304 4,259,840 4,325,376
EthaneDiol 4,194,304 4,362,086 4,616,938
Combustion | 4,194,304 4,353,986 4,635,078
Boat 4,194,304 4,418,409 4,791,092
Jet 4,194,304 4,358,176 4,701,586
Enzo 4,194,304 5,234,144 6,474,322
Foot 4,194,304 4,499,572 6,044,708

4.2 Limitations

In this section, we detail the three factors that limit our parallel
speedups in practice.

As presented in Table 3] we can see that the actual number of
vertices per partition is always greater than the ideal one (obtained
by dividing the total number of vertices by the number of parti-
tions). This is due to the boundary vertices that have to be added
to each partition, which imply redundant computations that directly
impact the parallel speedups. In particular, there can be important
variations in the size of the interface level sets (in terms of crossed
edges, in red in Fig. EI) within a single data-set, as shown in Fig. El
Therefore the size of the overlaps between the partitions (expressed
as the number of vertices in the lists %;- and %;+, see Sec. can
also vary. This induces redundant computations of varying impor-
tance within a single data-set. One can also see larger imbalance
in the number of vertices per partition for more complex data-sets.
This adds load imbalance to the parallel computations which further
decreases the speedups.

This load imbalance is worsened by the fact that, depending on
its impact on the join and split tree constructions, each vertex of
A/ does not require the same processing time in practice. This ef-
fect is shown in Table] which shows varying computation speeds
among the different partitions of a given data-set. In particular,
the more complex is the contour tree, the larger is the gap among
the computation speeds. One could choose to use several parti-
tions per thread, with dynamic load balancing, in order to minimize
such load imbalance, but this would introduce even more redundant
computations (because of the boundary vertices). That is why we
choose to use n; /2 partitions for n; threads: this indeed minimizes
the redundant computations, while fully exploiting the complete in-
dependency between the join and split tree computations.

These two factors (redundant computations and load imbalance)
jointly explain our lower speedups with more complex data-sets (es-
pecially for Foot).

Finally, a third factor also limits our parallel efficiencies for any
data-set. The contour tree computation requires on average very
few operations with respect to the number of memory accesses.
Its operational intensity [41] is therefore low which makes such
an application memory-bound, like most graph traversal algorithms
[2]. As shown in Table] giving the parallel computations of the
join and split trees to a single thread leads to higher computations
speeds. Hence speedups linear in the number of cores cannot be
obtained for such memory-bound applications: the memory band-
width of the processor can not cope with the memory requirement
of the 8 threads at a time. This also justifies our choice not to rely
on the 2-way SMT (Simultaneous MultiThreading) capability of our
CPU, and to use only 1 thread (instead of 2) per physical CPU core.

5 APPLICATION: DATA SEGMENTATION

The purpose of this work is to improve interactivity in contour-tree
based data analysis. Our algorithm enables the computation of aug-
mented contour trees within interactive run-times (up to a dozen
seconds, Table m), even for large and complex data-sets. Our aug-

Table 4: Computation speeds (in vertices/second) for join or split tree
computations with our parallel implementation, and with one single
thread to perform all computations required by our parallel approach.

Data-set | Parallel: min max | 1 thread: min max
Elevation 1,623,500 1,768,720 2,151,250 2,292,390
EthaneDiol 963,962 1,108,170 1,470,960 1,804,410
Combustion 1,029,050 1,190,160 1,688,080 2,006,210
Boat 1,055,410 1,237,030 1,463,880 1,985,720
Jet 1,065,720 1,256,730 1,754,240 2,094,010
Enzo 860,937 933,616 1,166,540 1,366,070
Foot 1,120,560 4,031,030 1,220,800 5,195,250

(b)

Figure 6: Augmented contour-trees for the EthaneDiol data-set (elec-
tron density) without (a) and (b) with topological simplification. An
isosurface of electron density is shown in transparent grey in both
cases. Pre-images through ¢ of arcs attached to maxima of electron
density (i.e. atoms) are shown in color. This segmentation extracts
the regions of influence for each atom (a) or for the main atom groups
in the molecule (b).

Figure 7: Augmented contour-trees for the Enzo data-set without (left) and with (right) topological simplification. The interactive topological
simplification of our contour tree based data-segmentation progressively reveals the core structures of the cosmic web (region of high matter
density, opaque surfaces), surrounded by voids of low density (transparent surfaces).

mented output data-structure is readily usable for data segmenta-
tion tasks, especially when features of interest coincide with con-
nected components of level-sets. Combined with persistent homol-
ogy based topological simplification (see Sec.[2I), this enables the
interactive exploration of hierarchies of data segmentations. Such
a segmentation capability is an important feature for quantitative
analysis [7]].

Fig. [6] shows an example of such a contour tree based data seg-
mentation on the EthaneDiol data-set (electron density). In par-
ticular, the contour tree is shown with a 3D embedding (colored
cylinders). In this example, the pre-images of the arcs attached
to maxima (which correspond to atom centers in the electron den-
sity field) reveal the influence regions for each atom (Fig. @
or for each atom group if topological simplification is employed
(Fig. @ Such a segmentation enables the quantitative analysis
of these features (for instance volume measurement). Saddles of the
electron density (red spheres, Fig. |§|) are located in configurations
at the boundary between multiple atom influence zones. These cor-
respond to covalent bonds. Last, the minima (blue spheres, Fig.
correspond to noise induced by the boundary effects. This noise is
easily removed with topological simplification (Fig. [6(b)).

A second use case is shown with the Enzo data-set (Fig.[7) which
represents matter density in universe expansion simulations. Re-
gions of high density correspond to the galaxies forming the core
structure of the data (often called cosmic web). These are sur-
rounded by large zones, called voids, of low matter density. Origi-
nally the augmented contour tree is composed of hundreds of thou-
sands of arcs (Fig. [7(a)), which challenges its interpretation. Here,
the interactive topological simplification of our contour tree based
data segmentations progressively reveals the core structures of the
cosmic web (Fig. [7(D)). In particular, regions of high matter den-
sity correspond to pre-images of arcs attached to maxima (opaque
surfaces) while voids correspond to pre-images of arcs attached to
minima (transparent surfaces).

In both use cases, such data segmentations were provided by the
augmented contour tree, for which our approach enables a compu-
tation within interactive times (at most a dozen seconds, Table |I|)
In comparison, the topological simplification takes typically less

than a second (1.25 for the simplification of 436,726 persistence
pairs on the Foot data-set) while the update of the segmentation is
instantaneous.

6 CONCLUSION

In this paper, we have presented a fast, shared memory multi-
threaded algorithm, based on a range-driven partitioning strategy,
for the complete parallel computation of augmented contour trees
on tetrahedral meshes. We have also provided a lightweight VTK-
based C++ reference implementation of our approach based on
OpenMP multi-threading.

In practice, especially for complex and noisy contour trees aris-
ing from acquired data-sets, the parallel speedups of our implemen-
tation are limited by redundant computations and load imbalance
among the partitions, as well as by the memory-bound nature of the
contour tree computation, which we have demonstrated experimen-
tally (Table). Nevertheless, on simulated data-sets we managed
to obtain good speedups with respect to the reference sequential
libtourtre [14]] implementation: these speedups exceed the ones of
Maadasamy et al. [26]] (although the data-sets differ). Also, our ex-
periments demonstrate the superiority of our approach over a naive
parallelization of libtourtre. Moreover, our parallel approach al-
lows for the augmented contour tree computation which enables
data-segmentation.

In future work, we plan to investigate processing of larger data-
sets that do not fit in memory by designing efficient out-of-core al-
gorithms. Also, our range-driven partitioning strategy seems partic-
ularly conducive to a parallelization of the persistence-driven sim-
plification of the trees. We will explore this direction in the future
to further improve the interactivity of the user-guided exploration of
persistence thresholds for interactive data segmentation. Moreover,
we believe our range-driven partitioning scheme could be further
improved, in particular by trying to minimize the number of bound-
ary vertices, to reduce computation redundancy. In that perspective,
the contour spectrum [3]] could be a good candidate for the selection
of optimal cutting isovalues, which would cross only few edges.
However, the research of the optimal trade-off between the balanc-
ing of the partition size and the computation redundancy remains an

open question. Last, we would like to investigate in the future the
extension of our approach to distributed systems. However, such
use cases are particularly appealing in simulation contexts where
the data is already distributed at the time of the simulation. This
means that the data partitioning scheme is likely to be imposed by
the simulation code, which would challenge our approach, based on
arange-driven partitioning.

ACKNOWLEDGEMENTS

This work is supported by the French National Association for Re-
search and Technology (ANRT), in the framework of the LIP6 -
Kitware SAS CIFRE partnership reference 2015/1039.

REFERENCES

[1]
[2]

[3]
[4]

[5

=

[6

=

[8]

[10]

(11]

[12]

[13]

[14

[15]
[16]

[17]

[18]

[19]

A. Acharya and V. Natarajan. A parallel and memory efficient algo-
rithm for constructing the contour tree. In PacificVis, 2015.

K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands,
K. Keutzer, D. Patterson, W. Plishker, J. Shalf, S. Williams, and
K. Yelick. The landscape of parallel computing research: a view from
berkeley. Technical report, University of California at Berkeley, 2006.
C. Bajaj, V. Pascucci, and D. Schikore. The contour spectrum. In
IEEE VIS, 1997.

T. F. Banchoff. Critical points and curvature for embedded polyhedral
surfaces. The American Mathematical Monthly, 1970.

S. Biasotti, D. Giorgio, M. Spagnuolo, and B. Falcidieno. Reeb graphs
for shape analysis and applications. Theoretical Computer Science,
2008.

R. L. Boyell and H. Ruston. Hybrid techniques for real-time radar
simulation. In Proc. of the IEEE Fall Joint Computer Conference,
1963.

P. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. Bell.
Interactive exploration and analysis of large scale simulations using
topology-based data segmentation. IEEE Transactions on Visualiza-
tion and Computer Graphics, 2011.

H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all
dimensions. In Proc. of Symposium on Discrete Algorithms, pages
918-926, 2000.

H. Carr, J. Snoeyink, and M. van de Panne. Simplifying flexible iso-
surfaces using local geometric measures. In Proc. of IEEE VIS, pages
497-504, 2004.

Y. Chiang, T. Lenz, X. Lu, and G. Rote. Simple and optimal output-
sensitive construction of contour trees using monotone paths. Compu-
tational Geometry Theory and Applications, 2005.

K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and
V. Pascucci. Loops in Reeb graphs of 2-manifolds. In Proc. of ACM
Symposium on Computational Geometry, pages 344-350, 2003.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to
Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

L. De Floriani, U. Fugacci, F. Iuricich, and P. Magillo. Morse com-
plexes for shape segmentation and homological analysis: discrete
models and algorithms. Computer Graphics Forum, 2015.

S. Dillard. libtourtre: A contour tree library. http://graphics.
cs.ucdavis.edu/~sdillard/libtourtre/doc/html/,
2007.

A.I. M. A. T.S. H. A. P. E. AIM@SHAPE Shape Repository. http:
//shapes.aim—at-shape.net/} 2006.

H. Edelsbrunner and J. Harer. Computational Topology: An Introduc-
tion. American Mathematical Society, 2009.

H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological per-
sistence and simplification. Discrete & Computational Geometry,
28:511-533, 2002.

H. Edelsbrunner and E. P. Mucke. Simulation of simplicity: a tech-
nique to cope with degenerate cases in geometric algorithms. ACM
Transactions on Graphics, 9:66—-104, 1990.

GNU. C++ Standard Library, Parallel Mode. https:
//gcc.gnu.org/onlinedocs/libstdc++/manual/
parallel_mode.html.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

(33]
[34]

[35]

(36]

[37]

(38]

(39]

[40]

[41]

A. Gyulassy, P. Bremer, R. Grout, H. Kolla, J. Chen, and V. Pascucci.
Stability of dissipation elements: A case study in combustion. Com-
puter Graphics Forum (Proc. of EuroVis), 2014.

A. Gyulassy, P.-T. Bremer, B. Hamann, and P. Pascucci. A practical
approach to Morse-Smale complex computation: scalabity and gen-
erality. IEEE Transactions on Visualization and Computer Graphics
(Proc. of IEEE VIS), pages 1619-1626, 2008.

A. Gyulassy, A. Knoll, K. Lau, B. Wang, P. Bremer, M. Papka, L. A.
Curtiss, and V. Pascucci. Interstitial and interlayer ion diffusion geom-
etry extraction in graphitic nanosphere battery materials. /EEE Trans-
actions on Visualization and Computer Graphics (Proc. of IEEE VIS),
2015.

A. Gyulassy, V. Natarajan, M. Duchaineau, V. Pascucci, E. Bringa,
A. Higginbotham, and B. Hamann. Topologically Clean Distance
Fields. IEEE Transactions on Visualization and Computer Graphics
(Proc. of IEEE VIS), 13:1432-1439, 2007.

A. Landge, V. Pascucci, A. Gyulassy, J. Bennett, H. Kolla, J. Chen,
and T. Bremer. In-situ feature extraction of large scale combustion
simulations using segmented merge trees. In SuperComputing, 2014.
D. E. Laney, P. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci.
Understanding the structure of the turbulent mixing layer in hydrody-
namic instabilities. IEEE Transactions on Visualization and Computer
Graphics (Proc. of IEEE VIS), 2006.

S. Maadasamy, H. Doraiswamy, and V. Natarajan. A hybrid parallel
algorithm for computing and tracking level set topology. In Interna-
tional Conference on High Performance Computing, 2012.

D. Morozov and G. Weber. Distributed merge trees. In ACM Sympo-
sium on Principles and Practice of Parallel Programming, 2013.

D. Morozov and G. Weber. Distributed contour trees. In Topological
Methods in Data Analysis and Visualization 111, 2014.

V. Pascucci and K. Cole-McLaughlin. Parallel computation of the
topology of level sets. Algorithmica, 2003.

V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli. Multi-resolution
computation and presentation of contour trees.

V. Pascucci, G. Scorzelli, P. T. Bremer, and A. Mascarenhas. Ro-
bust on-line computation of Reeb graphs: simplicity and speed. ACM
Transactions on Graphics (Proc. of ACM SIGGRAPH), 26:58.1-58.9,
2007.

G. Reeb. Sur les points singuliers d’une forme de Pfaff completement
intégrable ou d’une fonction numérique. Comptes-rendus de
I’Académie des Sciences, 222:847-849, 1946.

J. Singler, P. Sanders, and F. Putze. The Multi-Core Standard Template
Library. In Euro-Par, 2007.

B. S. Sohn and C. L. Bajaj. Time varying contour topology. IEEE
Transactions on Visualization and Computer Graphics, 2006.

S. Tarasov and M. Vyali. Construction of contour trees in 3d in o(n log
n) steps. In Proc. of ACM Symposium on Computational Geometry,
1998.

D. M. Thomas and V. Natarajan. Multiscale symmetry detection in
scalar fields by clustering contours. IEEE Transactions on Visualiza-
tion and Computer Graphics (Proc. of IEEE VIS), 2014.

J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci. Loop surgery
for volumetric meshes: Reeb graphs reduced to contour trees. /EEE
Transactions on Visualization and Computer Graphics (Proc. of IEEE
VIS), 15:1177-1184, 2009.

P. Tsigas and Y. Zhang. A simple, fast parallel implementation of
quicksort and its performance evaluation on sun enterprise 10000. In
Conference on Parallel, Distributed and Network-based Processing,
2003.

M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pasucci, and
D. Schikore. Contour trees and small seed sets for isosurface traversal.
In Proc. of ACM Symposium on Computational Geometry, 1997.

G. Weber, S. E. Dillard, H. Carr, V. Pascucci, and B. Hamann.
Topology-controlled volume rendering. IEEE Transactions on Visual-
ization and Computer Graphics, 2007.

S. Williams, A. Waterman, and D. Patterson. Roofline: An insight-
ful visual performance model for multicore architectures. Commun.
ACM, 52(4):65-76, 2009.

http://graphics.cs.ucdavis.edu/~sdillard/libtourtre/doc/html/
http://graphics.cs.ucdavis.edu/~sdillard/libtourtre/doc/html/
http://shapes.aim-at-shape.net/
http://shapes.aim-at-shape.net/
https://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html

	Introduction
	Related work
	Contributions

	Preliminaries
	Background
	Overview

	Algorithm
	Domain partitioning
	Local computations
	Contour forest stitching

	Experimental results
	Detailed performance results
	Limitations

	Application: Data Segmentation
	Conclusion

