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Abstract This paper documents the organization, the execution, and the results
of the Topology ToolKit (TTK) hackathon that took place at the TopoInVis 2019
conference. The primary goal of the hackathon was to promote TTK in our research
community as a unified software development platform for topology-based data
analysis algorithms. To this end, participants were first introduced to the structure
and capabilities of TTK, and then worked on their own TTK-related projects while
being mentored by senior TTK developers. Notable outcomes of the hackathon were
first steps towards Python andDocker packages, further integration of TTK in Inviwo,
the extension of TTK with new algorithms, and the discovery of current limitations
of TTK as well as future development directions.
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1 Introduction

The Topology ToolKit (TTK) [17] is an open-source software library for topological
data analysis (TDA) and scientific visualization. At the time of writing, TTK con-
sists of more than 60 modules—contributed from various researchers from several
institutions—that provide efficient algorithms to compute contour trees [7], Reeb
graphs [8], persistence diagrams [4, 3], topological simplifications [18], Morse-
Smale complexes [15], nested tracking graphs [13, 11], fiber surfaces [10], image-
based geometry reconstructions [12], andmanymore TDAproducts. The core feature
of TTK is its efficient and unified approach to topological data representation that
makes it possible to coherently chain these different algorithms. Therefore, devel-
opers can contribute new algorithms to TTK in a modular fashion, and end-users
can utilize TTK as a production tool for interactive TDA (Fig. 1). Furthermore,
this unified approach makes it possible for researchers to reproduce results, bench-
mark algorithms, and develop new algorithms in an existing interrelated software
environment.

Fig. 1 TTK is a software platform for topological data analysis and scientific visualization. It is both
accessible to end-users—via ParaView plugins (a), VTK-based generic GUIs (b), and command-
line programs (c)—and to developers—via Python (d), VTK/C++ (e) or dependence-free C++ (f)
bindings. TTK provides an efficient and unified approach to topological data representation and
simplification, which enables in this example a discrete Morse-Smale complex (a) to comply to the
level of simplification dictated by a piecewise linear persistence diagram (bottom-right linked view,
a). Code snippets are provided (d-f) to reproduce this pipeline.

However, TTK has two major limitations: a) TTK is difficult to use and extend
due to its extensive capabilities and complex software architecture; and b) TTK
is not easily accessible since it requires manual compilation and requires several
dependencies to utilize all features (which makes it especially difficult to install
TTK on non UNIX systems). These limitations often discourage new developers and
end-users to utilize TTK in their projects.

In an effort to overcome these limitations and simultaneously grow TTK’s user
and developer base, two senior TTK developers (Julien Tierny and Jonas Lukasczyk)
organized a hackathon as an event inwhich theywould be able to directly interact with
people from the topology-based visualization research community, understand their
practical needs, and address the concrete problems they face during integration of
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TTK in their own projects. This event would therefore be fundamentally different to
previous TTK related workshops, such as the TTK tutorials at IEEE VIS in 2018 [6]
and 2019 [5] that followed a teacher-centered teaching approach. At the same time,
the TopoInVis conference series was experimenting with novel initiatives to increase
interest and collaboration within the same community. Thus, the hackathon became
part of said initiative, as it seemed—and proved to be—beneficial for both the
conference organizers and conference participants to organize the hackathon as a
co-located conference event. However, the hackathon organizers did not have first-
hand experience about organizing and conducting such an event. Therefore, this
work documents

• the organizational aspects of the hackathon that can be used to successfully
conduct similar events in the future (Sec. 2); and

• the practical results of the hackathon that actually advanced TTK (Sec. 3).

2 Organization

The hackathon organizers had no prior experience about hosting hackathons; includ-
ing getting people interested, coping with different backgrounds of the participants,
determining a schedule, and setting reasonable goals for such an event. It was only
clear that the hackathon will be a single day event that will be co-located with
TopoInVis, and that the hackathon should focus on the specific problems developers
and end-users encounter when they try to integrate TTK within their own projects.

2.1 Preparation

To get an initial sense on the number, the different experience levels, and the interests
of potential participants, the organizers provided a five-minute online survey that
consisted of ten multiple choice questions. Thirteen people completed the survey
and they all registered for the hackathon. Participants were first asked about their
familiarity with TDA and TTK, as well as their programming skills (Fig.2), which
indicated that the hackathon program needs to reflect the diverse backgrounds of
the participants. Next, each participant was asked to select two of the following
suggested hackathon topics she or he is interested in (total number of votes are
shown in parenthesis):

• (6) TTK integration into an existing system
• (5) Actual Data Analysis with TTK
• (5) TTK support for vector fields
• (4) TTK support for periodic grids
• (4) TTK packaging
• (2) TTK support for tensor fields
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Two participants also used the option to suggest a new topic: the portation of an
existing algorithm to TTK. This poll also indicated that participants are interested in
largely different topics, so the hackathon program should not focus on a single sub-
ject. The remaining questions covered the types of datasets participants commonly
have to process, if they plan to bring these datasets to the hackathon, and minor
organisational issues.

TDA Experience

38.5%

Beginnerg

38.5%

Knowledgeableg

23.1%

Expert g

TTK Experience

30.7%

Beginnerg

46.2%

Knowledgeableg

23.1%

Expert g

Programming Skills

7.7%

Python Onlyg

15.4%

C++ Beginnerg

46.2%

C++ Knowledgeableg

30.8%

C++ Expert g

Fig. 2 Experience levels of the 13 participants in regard to topological data analysis (a), TTK (b),
and programming languages (c).

2.2 Program

The hackathon was designed as a single-day event that consisted of four ses-
sions (Fig. 3) led by both organizers. To address the diverse backgrounds of the
participants (Sec. 2.1), the organizers presented in the first session the internal struc-
ture of TTK and demonstrated its capabilities on several examples, where it was
possible for participants to follow along if they already had TTK installed.

The introduction provided a common basis for the rest of the hackathon where
participants split into small groups consisting of 4-5 people to work on a specific,
self-determined coding project based on the topics indicated in the survey. The
overall goal of the coding projects was to help participants with initial steps towards
first results, and to teach them how to continue these projects themselves later on, as
it was already anticipated by the organizers beforehand that most projects can not be
completed in one day. Initially, the organizers intended to provide a more extensive
introduction that would cover the first two sessions, but due to the experience level
and interest of the participants the introduction was cut short to have more time for
the actual coding projects.



Report of the TopoInVis TTK Hackathon 5

In the last session, a representative of each group summarized their corresponding
achievements of the day, the encountered problems, and the next steps they have to
take in order to complete their projects. To this end, every representative had to give
a ten minute presentation, followed by a discussion.

Fig. 3 Schedule of the TTK
hackathon: After providing an
overview of TTK’s structure
and usage, the participants
split into groups that worked
on different tasks, and subse-
quently presented their results
in a concluding session.

08:00 - 10:00 Introduction

10:30 - 12:30 Workgroups

14:00 - 16:00 Workgroups

16:30 - 18:00 Conclusions

3 Results

This section presents the most prominent results of the workgroups including im-
proved accessibility, ported algorithms, the integration of TTK in the production
tool Inviwo [9], and the support of periodic grids.

3.1 Packaging

An often problematic aspect of scientific data analysis and visualization is the main-
tenance of software environments, i.e. creating a working installation of an analysis
package and all its dependencies. Since TTK is shipped with a rich API (C++,
VTK, Python) and a plugin for the production visualization platform ParaView, its
full-option compilation can be challenging for novice users. Moreover, this process
differs substantially between platforms. The resulting complexity of getting depen-
dencies right for a TTK installation is overwhelming to users, and is thus a significant
obstacle towards making TTK’s methods available for a large user base.

3.1.1 Docker

For many scenarios (including scientific workloads), container technologies such as
Docker [14] have proven to be a viable solution. In brief, a container captures not
only an application, but also all of its dependencies in an otherwise self-contained,
minimal install of a base operating system. Execution of containers is achieved via
virtualization technologies built into all major operating systems. One goal of the
packaging project was therefore to create a build process for Docker containers,
which would expose TTK to a large user base.
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The actual Docker packaging concept of TTK that was brought forth by the
hackathon is based on the client-server model already provided by ParaView. Specif-
ically, the docker container only contains a ParaView server build, and a full-option
build of TTK, which is integrated into the ParaView server via its common plugin
mechanism. Once this container is running, a vanilla ParaView client downloaded
from Kitware’s website can then be used to connect to the server running inside the
container. Hence, all TTK algorithms are executed on the server within the container,
and the results are send to the client.

During the hackathon, the workgroup was able to produce a minimum viable
prototype. The discussions between hackathon participants were essential in deriving
this server-client based container solution. It could be confirmed that the resulting
containers are surprisingly easy to use and incur few limitations. Among the latter is
a limitation to server-side software rendering, since hardware accelerated graphics
within containers require complex vendor-specific setups that reduce the portability
of the containers. Since the hackathon, the corresponding implementation underwent
several improvements towards robustness and usability, and is now included in TTK.
Currently, publicly available Docker containers for different ParaView versions can
be downloaded from the DockerHub container registry [2].

3.1.2 Anaconda

The packaging workgroup also explored another approach to make TTKmore acces-
sible by providing TTK as an Anaconda [1] package. Anaconda is a cross-platform
open-source distribution platform for Python-based data science software that in-
cludes its own package manager. Similar to a docker image, each Anaconda package
specifies a build procedure and a list of dependencies; in this case to other Anaconda
packages. VTK is already available as an Anaconda package, so the workgroup in-
vestigated if the same build structure can be adapted to the VTK layer of TTK. To
this end, it was necessary to make use of custom CMake functions that are already
included in VTK 9, but were undocumented at the time of the hackathon. The work-
group spend most of its time on including the various dependencies of TTK such as
Sqlite, GraphViz, and Eigen. Based on the initial steps taken during the hackathon,
the VTK-layer of TTK is now available as the Anaconda package topologytoolkit
from the conda-forge channel [1].

3.2 Vector Field Robustness Module

Due to the limited availability of vector field topology algorithms in TTK, this
workgroup set out to implement 2D vector field robustness calculation [19] and
simplification [16] techniques.
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3.2.1 Vector Field Robustness
In brief, robustness is a metric for pairing and canceling critical points using mini-
mum perturbation of the !∞ norm of vector magnitudes. The algorithm itself consist
of three phases:

1. computation and classification of critical points, i.e., sources, sinks, and saddles;
2. construction of a specialized merge tree that considers the vector magnitude field

and the previously calculated critical point locations and types; and
3. if the user intends to apply topological simplification, regions of the vector field—

specified as sublevel set regions of the vector magnitude field—are numerically
perturbed.

3.2.2 Implementation
The process of implementing this module can essentially be split into two parts:
1) building the module infrastructure, and 2) implementing the algorithm. The
workgroup faced different struggles at each of these steps and required a lot of
assistance from the organizers.

At the infrastructure level, there are multiple layers of code that need to be written,
including the ParaView level, the VTK level, and finally the TTK level. Configuring
these is non-trivial without extensive experience in at least VTK, but to some extent
TTK as well. First, the selection and usage of data types at each level is non-trivial,
especially if the module is supposed to support vector fields of different data types.
Second, across all layers many definitions have to be repeated and consistent, which
can easily result in errors, i.e., at the Paraview layer the user interface controls class
members of the VTK layer, which are then passed to the base layer as parameters.

Implementing the algorithm portion of the module has its own mix of challenges.
First is the used programming language. Fortunately, the original code was already
written in c++, but if it would not have been, then the code would need to be
translated first. Next, the code required translating existing mesh definitions into
those used by TTK/VTK. Again, the workgroup members pointed out that it was
fortunate that TTK’s mesh specification is fairly easy to use, which made this code
transition trivial. The final challenge was minimizing the use of external libraries,
since ideally plugins should be self-contained. This was especially problematic for
this particular module since the first phase of the algorithm—the computation and
classification of critical points—was handled by an external library. Moreover, at the
time of writing, TTK was only able to compute and classify critical points of scalar
fields, so removing this dependency would require a lot of additional effort.

3.2.3 Results
The workgroup spend most of its time on the module infrastructure, leaving the
actual implementation of the different phases of the algorithm to be completed after
the hackathon. Yet, the participants felt confident to finish the module by themselves.
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3.3 Extending the Integration of TTK in Inviwo

Inviwo [9] is a rapid prototyping framework for visualizing spatial and abstract data.
The network editor of Inviwo provides the functionality for building a visualization
pipeline out of individual blocks, or processors. A basic subset of TTK’s functionality
has been part of Inviwo for some time in form of various processors for creating
TTK triangulations, topological simplification, and persistence diagrams. During
the course of the hackathon, this subset was to be extended to also expose the
Morse-Smale complex computation.

3.3.1 Implementation
Therewere some initial difficulties in understanding the extensive TTK infrastructure
and the plethora of function arguments and results, which might partially have been
caused by API requirements of VTK as TTK uses VTK to wrap algorithms. This
is essentially the same limitation also reported by the vector field topology work-
group (subsection 3.2). These difficulties were, however, quickly resolved through
interactions and discussions with the hackathon organizers. One design decision was
to decouple the computation from the output required for the subsequent visualiza-
tion, i.e. the geometric information of critical points and saddle point connections.
Thus, two processors were created. The first accepts a TTK triangulation, performs
the Morse-Smale calculations, and outputs the results. The second processor then
generates geometric primitives from the results.

3.3.2 Results
At the end of the hackathon it was possible to compute the Morse-Smale Complex in
Inviwo using the underlying TTK functionality and to visualize the results. Figure 4
depicts the Inviwo network computing the Morse-Smale complexes for a synthetic
dataset. In the future, Inviwo will be extended to support an even larger part of the
TTK functionality as well as incorporate periodic boundaries; a topic covered by
another workgroup (see Section 3.4).
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Fig. 4 Results of the TTK-based Morse-Smale complex computation in Inviwo. The figure shows
the underlying visualization pipeline (background), and Morse-Smale complexes for different sim-
plification thresholds (foreground/right).

3.4 Periodic Grids

Periodic boundary conditions are often used tomodel a very large (or infinite) system
using a small representative part called a unit cell. Many physical, chemical, and
biological systems exhibit repetitive symmetric patterns. These systems are ideal for
study and analysis based on simulations on small unit cells with periodic boundary
conditions. Other examples where periodic boundaries are used include the study of
metals, crystal lattices, and bulk solvents in molecular dynamics simulations.

Topological algorithms that are already implemented in TTK—such as theMorse-
Smale complex or merge tree computation—are able to process any domain that can
be represented via a simplicial complex. However, TTK’s original domain data
structures—i.e., implicit and explicit triangulations—did not support periodicity.
Therefore, this workgroup set out to extend the underlying triangulation data struc-
tures to support periodicity boundary conditions.

3.4.1 Implementation

At the base layer, TTK provides a unified triangulation interface that is capable of
representing any domain, and this interface is used by all topological algorithms
available in TTK. The TTK triangulation class structure is shown in Fig. 5. TTK
distinguishes between two types of triangulations: ExplicitTriangulation to
represent a triangulation where the cell connectivity is provided explicitly, and
ImplicitTriangulation to provide a highly memory efficient triangulation for
structured grids. ImplicitTriangulation, however, assumes that the boundary is
not periodic.
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Fig. 5 The inheritance structure of the different triangulation classes in TTK.

The workgroup decided to implement a new triangulation class for structured
grids with periodic boundaries called PeriodicImplicitTriangulation. Fig. 6
illustrates the concept behind this implementation for 2D grids, where additional
edges and triangles are created between boundary vertices to establish periodicity
in all coordinate directions. This concept directly translates to 3D grids. Based on
the design decisions discussed during the hackathon, the workgroup completed the
implementation of the new class after the hackathon and integrated it into the TTK
master branch.

Fig. 6 The periodic triangula-
tion in 2D is accomplished by
adding the dashed edges and
triangles to the triangulation
shown with solid edges.

3.4.2 Results

Aworking example of the Morse-Smale complex computation on a periodic domain
is shown in Figure 7. Currently, PeriodicImplicitTriangulation establishes
periodic boundaries in all coordinate directions, but in the future this class can be
extended to toggle periodicity for individual directions.
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Fig. 7 Results of the Morse-Smale complex computation for a methane crystal modeled via a
fixed unit cell that contains two methane molecules with non-periodic (left) and periodic (right)
boundary conditions. The images show a volume rendering of the underlying scalar field and the
location of the identified critical points, where maxima and saddles are represented as dark and
light blue spheres, respectively. Note that without periodic boundaries eight maxima are obtained
at the corners of the grid, however with periodic boundaries a single maximum is obtained.

4 Conclusion

Overall, the participants and organizers consider the hackathon a success, and the
majority of attendees stated that they would participate again in a future hackathon.
Besides the practical outcomes of the hackathon (Sec. 4.1), the senior developers also
learned about organizing such an event (Sec. 4.2), and derived future development
directions based on feedback of the participants (Sec. 4.3).

4.1 Workgroup Results

The hackathon initiated several significant coding projects that were later completed
and added to TTK’s source code. Specifically, due to the hackathon, TTK is now
also shipped via a Docker image and an Anaconda package (Sec. 3.1), is further
integrated into Inviwo (Sec. 3.3), and supports periodic grids (Sec. 3.4).

The coding project that worked on a new vector field robustness module (Sec. 3.2)
is not yet completed, but yielded valuable insight into the practical challenges new
developers face while adding new algorithms to TTK. Based on that insight, TTK’s
internal API is now getting revised (Sec. 4.3).
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Fig. 8 Results of the Morse-Smale complex computation for a methane crystal modeled via a
fixed unit cell that contains two methane molecules with a non-periodic (left) and a periodic (right)
boundary. (First row) One methane molecule is located in the middle of the domain and hence it is
correctly identified as an ascending manifold of a maximum in the Morse-Smale complex with or
without periodic boundaries. (Second row) However, for the molecule located at the corner of the
cell, the ascending manifold with periodic boundary correctly identifies the region corresponding to
the second molecule. The ascending manifold without periodic boundary fails to correctly segment
the volume into two methane molecules.
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4.2 Organizational Aspects

Amajor factor for the success of the TTK hackathonwas to organize it as a co-located
event at the TopoInVis conference. This was advantageous to both the hackathon
organizers as well as the participants, as conference participants correspond to TTK’s
target user base, and participants were able to simply extend their stay by one day to
attend the hackathon.

Although the organizers originally intended to spend the same amount of time
on introducing TTK and working on the actual coding projects, it turned out to be
better to spend more time on the actual coding sessions. In future hackathons, the
organizers recommend to use the revised schedule (Fig. 3), and to adjust the content of
the introduction session based on the attendees. To this end, the initial questionnaire
prior to the hackathon was essential in assessing the different experience levels
and interests of the participants. A shortcoming of the organization was the missed
opportunity to collect a formal feedback of the participants via another questionnaire.
The organizers strongly recommend to do so in future events.

4.3 TTK Development Directions

Already at the beginning of the hackathon it became apparent that many participants
struggled with installing TTK on their system. In fact, many potential users are
currently discouraged to even try out TTK because it is very difficult to get it up and
running. The hackathon sprout two valuable approaches to this problem by making
TTK accessible via a Docker container and an Anaconda package. Yet, the Docker
container requires superuser privileges and only supports software rendering, and
the Anaconda package does not feature ParaView as a front end. Besides advancing
these approaches, it also seems valuable to improve and simplify the general build
process of TTK in the future.

Moreover, it appeared that TTK’s internal API could be greatly simplified in
the interest of readability and accessibility to new developers, without changes in
performance or in its core design principles. Based on feedback from the participants,
the senior developers are currently revising TTK’s internal API to make the code
basemore transparent, simpler, and easier tomodify, in order to drastically reduce the
amount of effort users and developers have to spend on learning and extending TTK.

In conclusion, it is the belief of the organizers that the hackathon was essential
for growing TTK’s user and developer base, for addressing current limitations, and
deriving future development directions.
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