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Abstract
We present a novel framework for converting animated 3D shape sequences into compact and stable cage-based
representations. Given a raw animated sequence with one-to-one point correspondences together with an ini-
tial cage embedding, our algorithm automatically generates smoothly varying cage embeddings which faithfully
reconstruct the enclosed object deformation. Our technique is fast, automatic, oblivious to the cage coordinate
system, provides controllable error and exploits a GPU implementation.
At the core of our method, we introduce a new algebraic algorithm based on Maximum Volume Sub-matrices
(maxvol) to speed up and stabilize the deformation inversion. We also present a new spectral regularization al-
gorithm that can apply arbitrary regularization terms on selected sub-parts of the inversion spectrum. This step
allows to enforce a highly localized cage regularization, guaranteeing its smooth variation along the sequence.
We demonstrate the speed, accuracy and robustness of our framework on various synthetic and acquired data sets.
The benefits of our approach are illustrated in applications such as animation compression and post-editing.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Recent advances in 3D performance capture raised a large
number of new problems. Among them, high level control
of raw animated sequences is an important component of
any editing or processing framework. While former, syn-
thetic animated 3D sequences usually came with an under-
lying control structure (e.g., skeleton, cage) that tailored the
animation at high level, 3D+time acquisition systems only
provide raw point sets or mesh sequences, possibly consis-
tent over time [dAST∗08, PSDB∗10], but without any high
level control structure. Such a structure is key for compres-
sion, motion editing and other processing tasks.

High level motion control structures can be roughly clas-
sified in three categories. First, skeletons capture nicely lo-
cally rigid motions and are extensively used in synthetic hu-
man and animal body animation. Second, surface handles
can be defined using a shape decomposition and help es-
tablishing a consistent segmentation of the model, allow-
ing to morph independently each component w.r.t. rigging
controllers. Third, cages are low resolution meshes which
transfer their deformation to a high resolution model em-
bedded in their encompassed space by the mean of a specific
coordinate system. Recent advances in cage coordinate sys-
tems [JSW05, JMD∗07, LLCO08] now offer a very flexible
framework to smoothly and efficiently edit the shape of mod-
els with arbitrary topology, without even being constrained
to have a manifold structure, using a simple cage. These
three categories of structures have all their own strength and
weakness, and rather complete each other than compete in a
modelling and animation package.

To exploit their modelling power, with performance cap-

tured data for instance, a reverse engineering process is re-
quired to construct them automatically from a raw animated
sequence. Most reverse engineering methods are built on the
same observation: a large part of the raw sequence motion
can be captured at a coarser level and small local motions
can be ignored in a number of application scenarii. Thus, the
reverse engineering process consists in replacing a sequence
of (high resolution) raw models by a single static one to-
gether with a sequence of (coarser) control structures. Then,
the high resolution sequence can be reconstructed by ap-
plying the animated control structure sequence to the static
model. This yields immediate benefits for compression and
high level editing, but also for processing and analysis, as
the coarse nature of the control structure makes it practical
for a number of computationally expensive techniques.

Such a reverse engineering framework has been recently
proposed for skeletons [dATTHP08], where the resulting
structure can be used for both processing and shape/motion
modelling.

The case of cages however has not been entirely tackled,
and existing methods fail to provide high quality animated
cage sequences which are both able to reconstruct faithfully
the input sequence and also well-structured enough to be ex-
posed to the user for interactive post-editing.

In this paper, we address this problem and present a new
powerful framework for the compact and stable encoding
of deforming 3D objects with cage-based representations.
Given an animated sequence (with one-to-one vertex corre-
spondences) along with an initial cage embedding, our tech-
nique generates smoothly varying cage embeddings which
reconstruct the enclosed object deformation with control-
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lable error. Our framework is constructed around an inver-
sion process and exhibits the following features:

• Generality: our approach supports synthetic and cap-
tured sequences; it is oblivious to the cage coordinate sys-
tem; it can implicitly deal with realistic (e.g., as-rigid-
as-possible) as well as expressive (e.g., cartoon stretch-
ing) deformations. Thus, the resulting compact cage-
based representation can act as an intermediate, low-
memory footprint substitute to speed up time-varying ge-
ometry processing, while delegating the tricky task of de-
tail preservation to the underlying cage coordinate model.
• Speed: high resolution animated sequences are usually

heavy data sets; we propose an adaptive algorithm which
reduces the number of constraints taken into account, and
which maps naturally to GPUs.
• Accuracy: we measure the reconstruction error of our

cage-based representation and show that it remains low
and controllable, which allows its usage for compression.
• Usability: when exposed to the user, each reconstructed

cage should be easy to edit; we present an algorithm for
localized cage regularization, yielding very smooth vari-
ations of the reconstructed cage over the sequence, while
maintaining high accuracy in model reconstruction.

Technical Contributions: In order to fulfill these criteria,
we propose the following contributions:

• A fast and automatic framework for the extraction of re-
usable deformation cages from arbitrary sequences of de-
forming 3D objects (Sec. 3).
• A purely algebraic algorithm for the extraction of optimal

geometry-sensitive handles for cage deformation based on
maximum-volume sub-matrices [GOS∗10], allowing for
stable and fast cage coordinate inversions (Sec. 4).
• A novel spectral regularization algorithm, enabling a lo-

calized enforcement of regularization terms, only for the
cage vertices where the numerical solution of the inver-
sion is found to be the most unstable (Sec. 5).

We evaluate our framework on various synthetic and ac-
quired data sets and demonstrate its usefulness for different
applications (Sec. 6):

• Compression: Since cages are meant to have much less
vertices and faces that the enclosed model, they can be
used for sequence compression. In that case, decompres-
sion consists in, given the enclosed model at the first
frame only, reconstructing its poses along the sequence
thanks to the cages generated by our algorithm.
• Animation Transfer: Since they are stable and smooth, the

cages generated by our algorithm can be used to enclose
another object (in contrast to traditional inversion strate-
gies), thus transferring the animation to the other object.
• Speeding up geometry processing tasks: Sharp features

introduced by the artist in the “rest pose cage” are well-
preserved in our cages, therefore they can be used as a
low-resolution representation that is suited to heavy ge-
ometry processing tasks such as mesh interpolation, as
demonstrated in the accompanying video.

2. Related work

Many deformation models have been recently proposed for
interactive 3D shape modeling/editing, in particular using a
variational framework [LSCO∗04,LSLCO05,SA07] (see the
complete survey by Botsch and Sorkine [BS08]). While con-
trol skeletons [YBS07,WSLG07,JS11] are an industry stan-
dard to interact with the shape, volume deformations based
on enclosing cages have become very popular due to their
simplicity, flexibility and speed.

In particular, they are oblivious to the representation of
the enclosed object (polygonal soup, point cloud, volumet-
ric data etc.) and allow for efficient pre-computations, along
with simple on-line computations based on linear combina-
tions. This makes them a perfect support for deformation se-
quence encoding.

Cage-based Deformation: Originally investigated in 2D
for scalar value interpolation on non-convex polygons
[Flo03], the mean value interpolant has later been extended
to closed triangle meshes embedded in 3D [JSW05], allow-
ing for smooth volumetric deformations driven by a control
cage, as well as non linear deformation speedup [HSL∗06].

Since Mean Value Coordinates (MVC) involve computa-
tions based on Euclidean distances, unpleasing artifacts can
occur in regions of space nearby highly concave portions of
the initial cage. Harmonic coordinates (HC) [JMD∗07] over-
come this issue by solving Laplace equations in the cage in-
terior. However, unlike MVC, harmonic coordinates do not
have a closed form solution and can only be approximated
with a numerical solver. In contrast, Green Coordinates (GC)
[LLCO08, BCWG09b] admit a closed form solution (allow-
ing efficient computations) and induce quasi-conformal (de-
tail preserving) space deformations. Despite these advances
in cage-based volume deformations, only little work payed
attention to the stable computation of the inverse of the cage
coordinates, a necessary step for the cage-based encoding of
animated sequences.

Animation inverse kinematics: Several complete systems
have been presented for the purpose of animation post-
editing through the analysis of time-varying 3D shapes
[SZGP05, KG06, XZY∗07, KG08]. However, their internal
animation representation is not compliant with industry stan-
dards (e.g., skeletons or cages), which reduces their applica-
tive impact, as discussed in [dATTHP08].

More specialized techniques specifically address the ex-
traction of intermediate, manipulable shape representations
for the purpose of easy post-editing, such as reduced de-
formation models [DSP06, LWC06] or control skeletons
[SC07]. However, they do not encode the deformation itself,
which restricts their application to pose post-editing only.
In contrast, de Aguiar et al. [dATTHP08] introduced the first
framework able to fully convert the animation into a compact
and editable representation. Their algorithm reconstructs a
plausible skeleton corresponding to the input animation as
well as the skeleton’s deformation parameters enabling a
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Figure 1: Processing Pipeline. From left to right: Given a raw 3D+t sequence and an initial cage, we first extract an optimal
subset of positional constraints for the cage coordinate inversion. Then, the cage coordinates are inverted for each frame of
the input sequence. A selective enforcement of arbitrary regularization terms is defined to affect the cage vertices where the
inversion is the most unstable. The resulting smoothly varying cage sequence faithfully reconstructs the input sequence.

faithful reconstruction of the input sequence, useful for com-
pression for instance. However, such techniques are mostly
restricted to rigid motion estimation, suitable for human bod-
ies for instance, but not for sequences subject to stretch-
ing or volume variation. More importantly, such methods
are exclusively surface-based and require a manifold input.
Also, skeletons are mostly suited for shapes exhibiting tubu-
lar components and they are difficult to extend to arbitrary
shapes. A few skinning approaches [JT05, KSO10] allow to
reverse-engineer an animated mesh by considering moving
3D frames instead of the skeleton’s bones. This flexibility al-
lows to process sequences including non-trivial motion, like
cloth motion for instance [KSO10]. However, the absence
of a global structure on these frames limits the spectrum of
their applications to compression.

Only a few approaches address the stable and efficient
inversion of cage-based deformations. Xu et al. [XZY∗07]
propose to transfer an initial cage embedding from one frame
of the sequence to the others. However, their algorithm does
not explicitly invert the transformation, but instead tries to
compensate the cage pose change through local rotation
blendings, which turns to be inaccurate and unstable, espe-
cially when the cage is not close to the object. Similarly,
a possible strategy could consist in transferring the motion
from the mesh to the cage, using deformation transfer algo-
rithms [SP04]. However, this strategy would induce a large
reconstruction error of the model by the deformed cage since
there is no guarantee in general that the cage reproduces in
its interior the transformation it undergoes. For instance, an
as-rigid-as-possible (ARAP) transformation of the cage does
not induce an ARAP transformation of the enclosed model
and reciprocally. The same remark goes for any direct spa-
tial encoding of the cage w.r.t. the model geometry, such
as maintaining the cage as an offset of the animated mesh
for example. Moreover, the inversion of the cage must take
into account the coordinate system used for reconstruction.
Indeed, for a given cage, reconstructing an enclosed object
with different coordinates (Mean Value Coordinates, Green
Coordinates, Harmonic Coordinates, Positive Mean Value
Coordinates, Maximum Entropy Coordinates, etc.) leads to
different results.

Ben-Chen et al. [BCWG09b, BCWG09a] automatically

compute new cage embeddings to satisfy sparse user con-
straints through a sequence of least squares fitting. However,
their framework is using GC only and enforces pure rota-
tions on the medial axis of the shape, as well as Hessian’s
norm minimization on the cage, and is highly restricted to
as-rigid-as-possible deformations and does not specifically
address general and stable cage inversion.

Savoye et al. [SF10] introduce a global regularization
term aiming at preserving the differential coordinates of the
cage vertices. Being not rotation invariant, such an approach
leads to shrinking artifacts and fails at preserving the cage
geometry, which is often carefully designed by artists and
critical for editing. Finding an efficient but general regular-
ization term, with no a priori on the input sequence, and
which does not completely smooth away the cage geometry,
turns out to be unexpectedly difficult. We cope with it by re-
shaping the linear least squares fitting pipeline with a novel,
efficient inversion algorithm, coupled with a new selective
regularization scheme, which only regularizes the cage ver-
tices where the inversion is less numerically stable.

3. Overview

Input: We consider a raw animated sequence of N frames,
represented by a set of points P with time-varying embed-
dings in R3 (P1,P2, . . .PN ). This position data can corre-
spond to the embedding of a triangle mesh, a point cloud or a
volumetric mesh. Additionally, we consider an input cage CR
enclosing an arbitrary reference frame PR of the sequence.

Inversion procedure: Our processing pipeline (Fig. 1) is
composed of three major stages:

1. Compute the spatial encoding Φ of PR into CR using a
cage coordinate system (e.g., MVC, HC, GC).

2. Identify the set of handlesHR⊂PR which maximizes the
volume of a squared version of the cage coordinate ma-
trix. This property stabilizes and speedups the inversion
while guaranteeing dense inversion spectra.

3. For each frame Pt , the corresponding cage embedding
is computed by inverting the cage coordinates, using Ht
(embedding ofHR at frame t) as positional constraints.
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Figure 2: Cage coordinate (MVC) inversion using a tradi-
tional over-constrained least-squares fitting results in unsta-
ble cage inversions (middle row). The output cages exhibit
spikes and other artifacts (bottom row), which makes them
unusable for manual post-editing.

Additionally, our framework can selectively apply arbitrary
regularization terms on the highest frequencies of the spec-
trum of the inversion (the last singular vectors of the coordi-
nate matrix singular value decomposition).

Output: The resulting set of smoothly varying cages com-
pactly and faithfully reconstructs the input sequence.

4. MaxVol based Cage Inversion

In the following, we present our algorithm for the stable in-
version of the cage coordinates. We briefly discuss why a
simple strategy based on over-constrained least-squares fit-
ting can be unsatisfactory. Then we present our algebraic al-
gorithm based on optimal handle identification.

4.1. Problem statement

Given an enclosed 3D model represented by its reference
position data PR and a closed triangle cage mesh CR, cage
coordinates (such as MVC [JSW05], HC [JMD∗07] or GC
[LLCO08]) allow to encode each point position pi ∈ R3 of
PR w.r.t. to the cage vertex positions c j ∈ R3 (and triangle
normals n j for GC) of CR by: pi = ∑ j φ j(i) · c j, or PR =
Φ · CR, where PR is represented as an (n×3)-matrix, Φ is a
rectangular (n×m)-matrix and CR is a (m×3)-matrix.

Given a set of posesPt of the model, we aim at computing
a set of corresponding cages Ct , such that Φ · Ct ' Pt . The
L2-projection of Pt onto the space of admissible deforma-
tions is Pt = Φ · Φ

† Pt , which involves the pseudo-inverse
Φ
† of Φ. As the cage coordinate matrix Φ is large and dense,

the computation of its pseudo-inverse Φ
† (an (m×n)-matrix)

through singular value decomposition (SVD) is expensive.
A faster approach consists in solving the equivalent system,
where (ΦT ·Φ)† is an (m×m)-matrix:

Ct = (ΦT ·Φ)†ΦTPt (1)

This yields an over-constrained linear system, where the

number of unknowns m (the number of vertices in Ct for
MVC, plus the triangle normals for GC) is meant, by defi-
nition of control cages, to be significantly smaller than the
number of constraints n (the number of point samples in the
model). Let UΣV T be the SVD of (ΦT ·Φ). The solution is
given by:

c jt = ∑
k

V jk ·
(
(Uk)T ·ΦT ·Pt

)
· 1

sk
(2)

with sk the kth singular value.

However, a slight perturbation δPt on the constraints Pt
may be drastically amplified through the SVD when project-
ing onto the singular vectors associated with low singular
values (Eq. 2). We illustrate this phenomenon in Fig. 2: over-
constrained least-squares fitting yields instabilities resulting
in important spikes on the output cages, which makes them
useless application-wise. To overcome this issue, we first
propose a strategy to optimally relax the system, which has
the beneficial side-effect of decreasing the condition number
of the coordinate matrix, hence stabilizing its inversion.

4.2. MaxVol relaxation

Reducing the number of constraints of an over-determined
linear system reduces the chances of taking into account
multiple conflicting constraints. Traditionally, an arbitrary
subset of the constraints is considered, whose size is progres-
sively reduced until a satisfactory trade-off between stabil-
ity and precision is obtained. Ultimately, one could narrow
the size of the constraint set down to that of the unknowns.
However, as shown in Fig. 3, this selection process must be
carefully carried out to maintain a decent solution precision.

Minimum condition number sub-matrix To optimally re-
duce the number of constraints, while guaranteeing a stable
inversion process, one needs to seek the optimal square (m×
m) sub-matrix Φ� of Φ, with minimum condition number.
This linear algebra problem is well known to be NP-hard.
As discussed by several authors [CMI07, ĒMI09, GOS∗10],
computing ε-approximations is NP-hard as well.

Figure 3: Minimal selection of position constraints (as many
as cage vertices, MVC). Selecting constraints randomly on
the reference frame PR (left) generates a cage for the other
frames which performs poor reconstruction (middle left). In
contrast, our relaxation strategy (with the same amount of
constraints) generates a smooth reconstruction (right).
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Figure 4: Each iteration of the maxvol algorithm (top) cor-
responds to deselecting a constraint (red), and selecting an-
other (yellow). The condition number and the volume of Φ�
are respectively shown in red and blue (log scale).

Maximum volume sub-matrix A weaker indication of the
invertibility of a matrix is given by the value of its deter-
minant, which ought to be high for the matrix to admit sta-
ble inversion. Finding a square sub-matrix that has maxi-
mum volume (absolute value of the determinant) has been
intensively researched by the linear algebra community and
an efficient iterative algorithm has been proposed recently
[GOS∗10]. Although it is not guaranteed to identify the op-
timal sub-matrix maximizing its volume, its practical per-
formances demonstrate significant decrease of the condi-
tion number, which in the worst case falls back to that of
the over-determined system. In the following, we sketch the
main steps of this algorithm and detail its integration into our
framework.

MaxVol algorithm Let A be an (n×m)-matrix (m< n). The
goal of the algorithm is to identify the m rows of A such that
the resulting square (m×m) sub-matrix has maximum vol-
ume. The algorithm MaxVol is based on simple observations,
further discussed in the original paper [GOS∗10].

Let A� be the top square sub-matrix of A, composed of
the first m rows of A, and B = A ·A−1

� . Swapping the rows
i > m and j in A for which Bi j has maximum absolute value
increases the volume of the top square sub-matrix of A, if
|Bi j| > 1. Let e j be the column vector with value 1 at j and
0 elsewhere. Then, both swapping the rows i and j in A and
updating B can be performed in a single update of the form:

B := B− (B: j− e j + ei) · (Bi:− eT
j )/Bi j (3)

where B: j depicts the entire jth column of B and Bi: its entire
ith row.

This yields a practical iterative algorithm (Fig. 5):

• Initialization: Order the rows of A, such that its top
square sub-matrix A� is invertible. Compute B = A ·A−1

� .
• Iteration: Find the maximum absolute value element Bi j

with i > m. Swap rows i and j in the current solution.
Update B with Eq. 3.

The iterations can be stopped on demand or when the max-
imum Bi j gets smaller than one. In terms of complexity, the

initialization stage takes O(m2×n) operations and each iter-
ation takes O(m×n) steps.

4.3. Cage inversion based on maxvol relaxation

Applying the maxvol algorithm to our setting is straightfor-
ward, the input being Φ and the output being Φ�. In prac-
tice, we observed that about 2×m iterations are required
until convergence. Fig. 4 illustrates a few iterations of the al-
gorithm. Both the volume and the condition number of Φ�
respectively increases/decreases at each iteration (results are
shown in log scale), assessing the invertibility quality of Φ�.

Cage coordinate inversion For each frame Pt , the corre-
sponding cage embedding Ct is given by (where Ht is the
sub-matrix of the top m rows of Pt ):

Ct := Φ
†
�Ht (4)

The pseudo-inverse Φ
†
� is computed through SVD, as dis-

cussed in the case of (ΦT ·Φ)† in Eq. 2 (ΦT ·Pt needs to be
exchanged withHt ). Notice that for each frame, the rows of
Ct and Pt also need to be swapped according to the swaps
performed in Φ by maxvol. Fig. 6 provides a comparison
of the repartition of the singular values yielding from the
SVD, between our technique (Φ�) and the classical over-
determined approaches (Φ and Φ

T ·Φ). Notice that Φ� ex-
hibits a more convex spectrum. Also, as discussed with Eq. 2,
important instability occurs in the inversion if the last singu-
lar values of the SVD are low. With our relaxation scheme,
the last singular values of Φ� are much higher than those
of the traditional over-determined approximations (Fig. 6,
rightmost plots), which yields much more stable inversions.

Finally, once Φ� is computed, the inversion of the cage
embeddings for the whole sequence is faster with our
approach than with the traditional over-determined least-
square strategy. In both cases, the SVD of an (m×m) matrix
needs to be computed in a pre-process. For each frame, with
our strategy, the solution is obtained by the multiplication of
an (m×m) by an (m×3)-matrix (Eq. 4). For the traditional
least-squares approach however, an extra multiplication be-
tween an (m×n) and an (n×3)-matrix is required (Eq. 1).

A :

B :
0

3

0

3

4

2

2

4

Figure 5: Iterations of the maxvol algorithm on a toy exam-
ple. At each iteration, the location of the element Bi j with
maximum absolute value indicates which rows to flip in A to
improve the volume of A� (in blue on the right).
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Geometric interpretation Although our strategy is purely
algebraic, it yields interesting geometrical insights. When re-
flected on the matrix PR, the row swaps of Φ are equivalent
to deselecting a constraint and picking another one instead
(Fig. 4). Near convergence, the constraints to flip get closer
and closer. At the end of the process, the set of correspond-
ing points of PR (in green in Fig. 4) can be interpreted as a
minimally optimal set (notedHR⊂PR) of handles for defor-
mation, given the model PR, the cage CR and the employed
cage coordinate model. As shown in Fig. 7, the local den-
sity of CR is captured by HR. Also, configurations implying
high curvature, sharp edges, or boundaries (Fig. 4) are cap-
tured by HR, while the symmetries of the cage are also rep-
resented byHR. In other words, the constraintsHR are well
dispatched in the space of cage coordinates.

Fig. 8 shows the cage reconstruction with MVC of two
poses with our inversion strategy, compared to the classi-
cal over-determined least-squares. Since our strategy relaxes
the set of constraints, the error in the model reconstruction is
necessarily slightly higher. However, as shown on the right,
our approach removes many of the cage instabilities occur-
ring with the over-determined approach.

Coordinate system analysis Fig. 9 presents the spectral be-
havior of the different cage coordinate systems used in the
paper, namely MVC, HC and GC. MVC and HC exhibit sim-
ilar spectral behavior: in comparison to the over-determined
full least-squares system (Fig. 9, bottom), MaxVol exhibits
much higher last singular values, which stabilizes the inver-
sion. In the case of GC, MaxVol increases the singular val-
ues all over the spectrum. In all the cases, MaxVol decreases
significantly the condition number of the system.

Fig. 10 shows the cage reconstruction with our inversion
strategy (MaxVol or not), with different coordinate systems
(MVC, HC, GC). Since they do not admit a close form ex-
pression, HC need to be approximated with a solver, which
necessarily leads to residuals (as disccused in [JMD∗07]),
whose importance is implementation-dependant. This im-
precision can be observed when inverting the reference pose
PR (Fig. 10, right): the inversion does not result in the iden-
tity (spike on the base of the tail). The GC are the most insta-
ble to invert. The space of transformations they allow is too
large to allow accurate inversions if the face normals are not
constrained to be orthogonal to the cage faces. Also, the in-
version uniformly processes all the unknowns of the system

Figure 6: Comparison of the coordinate matrix spectra for
the sequence of Fig. 1 with MVC (normalized plots). Our ap-
proach (Φ�) exhibits a more convex spectrum, with higher
last singular values (right), yielding more stable inversions.

Figure 7: Geometry-sensitive deformation handles ex-
tracted by our algebraic-only algorithm. Sharp edges (ears)
and high curvatures (finger tips) are implicitly detected as
constraints. The sampling density (tail) and the symmetry of
the cage are also captured by the constraints.

whereas for GC, these mix much different entities (vertex
positions and face normals).

As shown in Fig. 8, our relaxation strategy significantly
reduces the condition number of the system, resulting in less
instabilities on the inverted cages. Still, a few of them may
remain (Fig. 8, right). To overcome this issue, we introduce a
novel regularization strategy, that selectively focuses on the
unknowns for which the most instabilities occur.

Figure 8: Comparison between the over-determined least-
squares approach (blue) and our relaxation strategy (red)
for deformations based on rotations (top) and stretching
(bottom). The point-to-point L2 and L∞ distances between
the reconstructed model and Pt are given by δ2 and δ∞
(fraction of the model bounding box diagonal).
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Figure 9: MaxVol handles and coordinate matrix spectra
for different coordinate systems (MVC, HC, GC). In each
case, MaxVol drastically reduces the condition number of
the system (Φ�, middle) in comparison to over-determined
least-squares (Φ, top). The gain (bottom row) is maximum in
high frequencies, where the inversion is the most instable.

5. Sub-spectral regularization

Traditionally, to cope with the instability of a linear system, a
solution consists in introducing globally a geometrical reg-
ularization term. This enables to bias the solution towards
a space of preferred solutions (e.g. detail-preserving or as-
rigid-as-possible transformations). However, global regular-
ization also comes with several drawbacks. First, such a so-
lution is not general, since it makes assumptions on the trans-
formations present in the input sequence. Second, even with
a priori information on the model transformations, there is
no direct connection to the transformations that the cage
should undergo. Third, in practice, this solution tends to
over-damage the data fitting, even before all of the instability
is corrected.

5.1. Regularization terms

In our setting, without any a priori on the space of trans-
formations exhibited in the input sequence, one of the only
desirable properties of a regularization term is its invariance
against rotation. For instance, Savoye et al. [SF10] enforce
the preservation of the differential coordinates of the cage
vertices. However, this is not rotation invariant and leads to
significant shrinking artifacts. The preservation of the norm
of the Laplacian of the cage vertices does not suffer from
this drawback but involves non linear terms [ESP08].

Figure 10: Comparison between over-determined and
MaxVol inversions with different coordinate systems.

Minimizing the Laplacian of the cage vertex positions is
rotation invariant but, without sophisticated reconstruction
strategy [BK03], it smooths away the cage curvature. The
same holds for the minimization of the deformation Hes-
sian [BCWG09b, TTB11]. In other words, rotation invariant
linear regularization terms are destructive, in the sense that
they will smooth away the information provided in the input
cage CR. In the following, we present a new regularization
algorithm that locally allows the usage of destructive terms
only for the unknowns where the inversion solution is unsta-
ble and not reliable.

5.2. Sub-spectral regularization algorithm

Let UΣV T be the SVD of Φ�. The vector of the cage ver-
tex positions (and of its face normals for GC) can be ex-
pressed as a linear combination of the columns of V : Ct =

∑k V k ·qkt , qkt ∈ R3. The solution to the system inversion is
given with qkt = (Uk)T ·Ht/sk. A common strategy for sub-
spectral regularization [HSS92] consists in directly cropping
the spectrum by setting the inverse of the last singular values
to 0. Instead, a second common solution [HSS92] consists in
parameterizing the stability of the solution by a scalar α, and
using s′k instead of sk, where s′k = sk

s2
k+α2 . These two strate-

gies do not allow for the insertion of a geometrical regular-
ization term, which would take into account the physics of
the problem. In the following, we introduce a novel and gen-
eral sub-spectral algorithm, which allows to include relevant
geometrical regularization terms only on the most instable
portions of the spectrum of Φ�.

As shown in Fig. 6, the left part of the spectrum of Φ� can
be interpreted as the low frequencies of the inversion, while
the right part can be interpreted as its high frequencies. Also,
as discussed earlier, the cage reconstruction instability is
more likely to occur on the high frequencies of the spectrum,

Figure 11: Singular vectors of Φ� on the cage (MVC, in ab-
solute value, gradient of pink). For the last singular values,
where instabilities may occur, these vectors are localized to
a small subset of cage vertices.

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



J.M. Thiery, J. Tierny & T. Boubekeur / CAGER: Cage-based Reverse Engineering of Animated 3D Shapes

Figure 12: Cage and model reconstruction with MVC and
Laplacian minimization. Increasing the spectrum threshold
yields localized and progressive blending of the unstable
cage vertex solutions with the solutions of the regularization.

where the singular values are low. The last singular vectors
of Φ� correspond to its “pseudo-kernel”, in the sense that
a perturbation in that space induces only a slight change in
the model reconstruction, since it is amplified by the corre-
sponding singular value. In other words, relaxing the data-
fitting constraints for these vectors will have a negligible
impact on the reconstruction of the model. Therefore, our
technique enforces regularization terms (expressed through
a matrix ∆) only on the high frequencies of the spectrum. As
the last singular vectors are highly localized (see Fig. 11),
this guarantees a minor destructive impact of the regulariza-
tion term on the global aspect of the cage inversion (its low
frequency component) while locally fixing instabilities.

Given a spectrum threshold s, the low frequency part of
the spectrum is directly reconstructed from the positional
constraintsHt :

qkt = (Uk)T ·Ht/sk, ∀k < (m− s) (5)

The high frequency part is reconstructed with the tradi-
tional combination of positional constraints and regulariza-
tion, to minimize the following energy (λ ∈ [0,1]):

E = λ||∆ · Ct ||2 + ||(Φ� · Ct)−Ht ||2 (6)

which is equivalent to (with qkt fixed ∀k < (m− s)):

E = λ|| ∑
k<(m−s)

∆ ·V k ·qkt + ∑
k≥(m−s)

∆ ·V k ·qkt ||
2

+ ||(Φ� · Ct)−Ht ||2 (7)

This is equivalent to minimizing the following energy,
which can be done by inverting a linear system in the least-
squares sense:

λ|| ∑
k≥(m−s)

∆ ·V k ·qkt + ∑
k<(m−s)

∆ ·V k ·
(
(Uk)T ·Ht/sk

)
||2

+ ∑
k≥(m−s)

s2
k ||qkt −

(
(Uk)T ·Ht/sk

)
||2

This strategy can be used with arbitrary linear regulariza-
tion terms expressed through a matrix ∆. Figs. 12 and 13
show examples of cage and model reconstructions with a
particularly destructive term, the minimization of the cage
Laplacian. As shown in Fig. 12, our spectral strategy en-
ables a progressively localized blending of the data-fitting

constraints with the regularization term, while the rest of
the cage remains unaffected. Fig. 13 provides further com-
parisons between a classical regularization strategy and our
spectral approach on a challenging cage with sharp dihe-
dral angles and a deformation with high distortion. The
color map plots the point-to-point distance with the non-
regularized cage. In other words, it depicts the local quality
of the data fitting in term of cage reconstruction. Whereas
classical regularization damages globally the reconstructed
cage, our strategy automatically localizes the effect only on
the unstable cage vertices, while preserving the true solution
on stable ones, yielding much more accurate model recon-
struction.

6. Results

In this section, we present the results of our technique on
data-sets coming from spatio-temporally coherent motion
captures [dAST∗08] and synthetic animations (see Fig. 14).
These experiments have been run under Linux on a com-
modity laptop with a Core 2 Duo 2.53 GHz CPU and a
GeForce GTX 260 M GPU. Our programs are written in
C++. The maxvol algorithm is fully implemented on the
GPU with CUBLAS, while SVD computation uses GSL and
OpenNL is used to solve Eq. 7. Unless explicitly mentioned,
all the results have been computed with the same default
setting (MVC, MaxVol selection, Laplacian minimization,
λ = 1, s = 20). Distance measurements are expressed w.r.t.
the bounding box diagonal.

6.1. Encoding quality

Fig. 14 shows the cage-based encoding of several input se-
quences, along with the resulting reconstruction. The cor-
responding timings are provided in table 1. Note, that the

Figure 13: Localized effect of our sub-spectral regulariza-
tion (s = 20), in comparison to traditional global regular-
ization, on a destructive regularization term: the Laplacian
minimization (MVC and maxvol relaxation). In both cases,
the regularization weight λ is set to the same value (1).
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Figure 14: Reconstructed sequences: for each sequence, PR, CR andHR are shown on the left. For each frame t, on the top, Pt
appears on the left; the reconstructed cage is on the right, the reconstructed frame is at the bottom (larger view). The blue and
red curves respectively show the evolution of the point-to-point L2 and L∞ model reconstruction error (x-axis: frame number).

cage embeddings smoothly vary over time (cf. video), while

Figure 15: Singular vectors (with their singular values) lo-
calized on the skirt of the Skirt model. A change in the 315th

singular vector induces a change in the model reconstruc-
tion, up to a factor 1/10.

guaranteeing low model reconstruction error. Hence, the out-
put cages can be used for post-editing. The algorithm, with-
out any geometrical a priori, implicitly handles acquired
data-sets (top-4 rows) and synthetic data motioned through
as-rigid-as-possible (bottom row) or cartoon-like stretching
deformations (Fig. 12). The algorithm successfully recon-
structs the sequence despite chaotic deformations (cf. the
skirt motion, 3rd row). Note, that in this specific example,
the spectral regularization automatically removed unstable
cage spikes but preserved those which are mandatory for a
correct reconstruction.

As demonstrated in Fig. 15, removing systematically all
the spikes appearing on the skirt would require a regulariza-
tion up to the 50th last singular vectors. However, the corre-
sponding singular value is then more than 0.1, which would
induce significant model reconstruction errors. Then, the re-
maining spikes appearing in Fig. 14 are necessary for an ac-
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Figure 16: Reconstruction (right) of a noisy sequence (left).

curate model reconstruction. Moreover, these features of the
cage still evolve smoothly along the sequence (cf. video).

6.2. Encoding robustness

Fig. 16 shows a reconstruction example with random per-
turbations inserted in the sequence to fit (each vertex is dis-
placed randomly within a radius equal to 0.3× 10−2 times
the bounding box diagonal). The algorithm still generates a
valid reconstruction. Note that the curves of the model re-
construction errors exhibit the same overall behavior than
those of the original data-set (Fig. 14, top row) but with ad-
ditional noise. In particular, the difference between the max-
imum L∞ errors is 0.36× 10−2, which exactly reflects the
introduced noise and which further assesses the robustness
of the algorithm.

Fig. 17 shows a reconstruction with a reference cage com-
puted automatically (602 vertices). Interestingly, the re-
construction error is lower (with an average L∞ error of
0.73× 10−2 against 1.39× 10−2 in Fig. 14, top row). In-
deed, realistic cages designed by artists (Fig. 14) are more
challenging to fit, given their specific structure and the very
small number of unknowns they provide to the inverse sys-
tem.

6.3. Comparisons and limitations

The localized nature of our sub-spectral regularization al-
lows to reconstruct a cage sequence which is more faithful
to the input reference cage, avoiding the rounding artifacts
stemming from destructive regularization terms (Fig. 13).
Fig. 18 provides a comparison between our algorithm and
a traditional, globally regularized, over-determined least-
squares (with the exact same setting). Important artifacts
occur with the traditional approach (see the inset zooms),
yielding higher reconstruction error (with an average L2 er-
ror of 0.24×10−2 against 0.14×10−2 with our approach).

As discussed earlier, not only our sub-spectral scheme en-
ables localized regularization, but it also automatically fo-
cuses on the cage vertices where higher instabilities occur.

Fig. 19 and 20 show the relative importance of each step
of our approach (MaxVol and spectral regularization) on a
toy example and the Skirt sequence respectively. In Fig. 19,

Figure 17: Encoding with a reference cage generated auto-
matically. The surface is first voxelized. We then contour a
slight offset of this volume before simplyfing it using QSlim.

Figure 18: Cage and model reconstruction comparison be-
tween a globally regularized over-determined least-squares
(blue) and our approach (red), with the same setting (MVC,
Laplacian minimization, λ = 1).

the upper part of a bumpy torus has been scaled up (left col-
umn). In contrast to the other methods, cage inversion by
MaxVol relaxation and spectral regularization reconstructs a
cage with a visually similar deformation. In Fig. 20, the reg-
ularization parameters have been increased (s = 50) for il-
lustration purpose. The full least-squares approach produces
the largest spikes (1st row). These are stabilized thanks to the
MaxVol relaxation (2nd row). Spectral regularization further
improves the cage stability (3rd and 4th row), while the most
stable cages are obtained in conjunction with MaxVol relax-
ation (4th row).

For the Capoeira and Horse sequences (Fig. 14), our ap-
proach respectively yields an average L2 error of 0.12 10−2

and 0.19 10−2 against 0.47 10−2 and 0.56 10−2 in the
case of the skeleton-based framework by deAguiar et al.
[dATTHP08] (numbers from the original paper), which is
more than a 50% error improvement. Although they are
not directly comparable (different computers), the timings
of our implementation are up to 50 times smaller than in
[dATTHP08], both on a pre-processing and per-frame basis.

Figure 19: Illustration of the technique on a toy example.
Left column: Input (Original model, deformed model, and
cage). Middle column: Results with full system (FS) inver-
sion, without and with regularization. Right column: Results
with MaxVol (MV) inversion, without and with regulariza-
tion. In both cases, MVC were used, and the regularization
was performed with parameters λ = 1, s = 5.
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INPUT SEQUENCE POINT COUNT CAGE (#V / #T) FRAMES PRE-PROCESS: AVERAGE TOTAL
MAXVOL + SVD (ms) FRAME INVERSION (ms) (ms)

Fig. 14, 1st row 19,998 330 / 656 499 5,616 568 289,048
Fig. 14, 2nd row 19,998 330 / 656 179 5,616 568 107,288
Fig. 14, 3rd row 19,990 368 / 732 437 7,291 890 396,221
Fig. 14, 4th row 15,002 339 / 674 169 5,617 624 111,073
Fig. 14, 5th row 8,431 348 / 692 48 5,029 748 40,933

Table 1: Detailed running times for Fig. 14. The pre-process, dominated by MaxVol, and the frame inversion timings are mostly
dependent on the number of unknowns (number of cage vertices for MVC).

Limitations As one can expect from a cage-based frame-
work (error curves Fig. 14)), the maximum reconstruction
error occurs on frames where the model pose is radically
different (highly distorted) from the reference pose (e.g., 2nd
row, middle). Another limitation is that, since our approach
is cage-based, very small shape variations (e.g. small clothes
motion) might be difficultly captured by the cage, since it
tends to be designed for more global shape interactions.

6.4. Applications
Our high-level animated representations can be used for var-
ious applications.

Animation lossy compression: The reconstruction step of
our algorithm only requires PR, CR and the output cage po-
sitions across time. For instance, the first animation of Fig.
14 can be encoded in binary format with 115 MB (single
connectivity, 499 embeddings), while it can be compressed
down to 2.58 MB with our approach with a single connec-
tivity, a single model embedding, a single cage connectiv-
ity and its 499 embeddings. The reconstruction error can be
tuned with the spectrum threshold. Since our output cages
smoothly vary over time, their vertex trajectories could even
be compressed using orthogonal schemes (e.g. wavelets) for
higher compression rates.

Figure 20: Relative importance of the individual steps
of our approach: inversion of the Skirt sequence with the
over-determined least-squares (Full LS No Reg, first row),
MaxVol (MaxVol No Reg, second row), the over-determined
least-squares with spectral regularization (Full LS With
Reg, third row, s = 50), MaxVol with spectral regularization
(MaxVol With Reg, fourth row, s = 50).

Animation transfer: Since they are clean and re-usable,
the output cages can be employed for post-editing or ani-
mation transfer. In the accompanying video, an artist fits
a model with complex topology (many handles) into the
Capoeira reference cage. The cage sequence reconstructed
with our algorithm automatically yields a smooth animation
transfer to the new model.

Speeding up time-space processing tasks: Time-
consuming processing tasks on time-varying 3D shapes can
be drastically speeded up by considering the cages recon-
structed with our algorithm, which have a memory footprint
orders of magnitude smaller than the input sequences. In
the accompanying video we present an application to the
interactive exploration of shape spaces [WDAH10] (imple-
mentation provided by the authors). Given a set of model
poses and a cage, our algorithm automatically adapts the
cage to the entire set of poses. Then shape space exploration
occurs interactively (500x speed-up) on the space of cages,
delegating detail preservation to the underlying coordinate
system.

7. Conclusion
We have presented CAGER, an automatic algorithm for the
compact and stable encoding of animated 3D shapes into
cage-based representations. The main contributions are an
optimal selection of handles for cage coordinate inversion
and a novel spectral regularization scheme, which localizes
its destructive effects and automatically focuses on the most
unstable cage vertices. Our technique is fast (GPU imple-
mentation) and generates smoothly varying, re-usable cages
which still reconstruct the input sequence with higher accu-
racy than previous methods. We demonstrated the benefits
of our algorithm for several 3D+t processing tasks.

Interestingly, our approach makes only few geometrical
considerations. Our solution naturally rises from a thorough
algebraic analysis of the inverse problem. Hence, our frame-
work completely delegates the geometrical aspects to the
chosen cage coordinate model, guaranteeing the generality
and the versatility of the technique. In future work, we would
like to explore the usability of our algebraic solution to
other geometry processing tasks involving over-determined
inverse problems. Also, an interesting research avenue is the
automatic optimization of the cage geometry and connec-
tivity in order to optimize the reconstruction of a target se-
quence, in other words, caging by example.
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[SP04] SUMNER R., POPOVIĆ J.: Deformation transfer for tri-
angle meshes. In ACM Transactions on Graphics (TOG) (2004),
vol. 23, ACM, pp. 399–405. 3

[SZGP05] SUMNER R. W., ZWICKER M., GOTSMAN C.,
POPOVIC J.: Mesh-based inverse kinematics. ACM Trans.
Graph. (SIGGRAPH) 24 (2005), 488–495. 2

[TTB11] THIERY J.-M., TIERNY J., BOUBEKEUR T.: Jacobians
and Hessians of Mean Value Coordinates for Closed Triangular
Meshes. Tech. rep., CNRS LTCI Telecom ParisTech, 2011. 7

[WDAH10] WINKLER T., DRIESEBERG J., ALEXA M., HOR-
MANN K.: Multi-scale geometry interpolation. Comp. Graph.
Forum (EUROGRAPHICS) 29 (2010), 309–318. 11, 12

[WSLG07] WEBER O., SORKINE O., LIPMAN Y., GOTSMAN
C.: Context-aware skeletal shape deformation. Comp. Graph.
Forum (EUROGRAPHICS) (2007), 265–274. 2

[XZY∗07] XU W., ZHOU K., YU Y., TAN Q., PENG Q., GUO
B.: Gradient domain editing of deforming sequences. ACM
Trans. Graph. (SIGGRAPH) 26 (2007). 2, 3

[YBS07] YOSHIZAWA S., BELYAEV A., SEIDEL H.: Skeleton-
based variational mesh deformations. Comp. Graph. Forum (EU-
ROGRAPHICS) (2007), 255–264. 2

c© 2012 The Author(s)
Journal compilation c© 2012 The Eurographics Association and Blackwell Publishing Ltd.


