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Abstract

Mean Value Coordinates provide an efficient mechanism for the interpolation of scalar functions defined on orientable
domains with non-convex boundary. They present several interesting features, including the simplicity and speed that
yield from their closed-form expression. In several applications though, it is desirable to enforce additional constraints
involving the partial derivatives of the interpolated function, as done in the case of the Green Coordinates approximation
scheme |Ben-Chen et al.(2009)Ben-Chen, Weber, and Gotsman| for interactive 3D model deformation.

In this paper, we introduce the analytic expressions of the Jacobian and the Hessian of functions interpolated through
Mean Value Coordinates. We provide these expressions both for the 2D and 3D case. We also provide a thorough analysis
of their degenerate configurations along with accurate approximations of the partial derivatives in these configurations.
Extensive numerical experiments show the accuracy of our derivation. In particular, we illustrate the improvements of our
formulae over a variety of Finite Difference schemes in terms of precision and usability. We demonstrate the utility of this
derivation in several applications, including cage-based implicit 3D model deformations (i.e. Variational MVC deforma-
tions). This technique allows for easy and interactive model deformations with sparse positional, rotational and smoothness
constraints. Moreover, the cages produced by the algorithm can be directly re-used for further manipulations, which makes
our framework directly compatible with existing software supporting Mean Value Coordinates based deformations.

Disclaimer

This material contains the full derivation of the derivatives of Mean-Value Coordinates for piecewise linear meshes, in 2D
(where the mesh is a closed polygon) and in 3D (where the mesh is a closed triangle mesh). No application is discussed in
this document.

The derivation is relatively involved, and due to a lack of space, only the final results appear in the corresponding article.




Overview

We first review Mean Value Coordinates in Sec. The core contribution of our work, the derivation of the Jacobian and
Hessian, is presented in Sec. [2| through In particular, Sec. [3] and [4] provide the specific results for the 2D and 3D cases
respectively.

As the derivation of the Jacobian and the Hessian is relatively involved, for the reader’s convenience, we highlighted

the final expressions with ’rectangular boxes ‘, whereas the final expressions for degenerate cases are highlighted with a

ellipsoidal box |.
All the mathematical details of the derivation that were left out for readability are given in Sec. [0} [7 [§] and [)} We also
present empirical evaluation of the derivatives in 3D by comparing our results with Finite Differences in Sec.

1 Background

In this section, we review the formulation of Mean Value Coordinates in 2D and 3D |Ju et al.(2005)Ju, Schaefer, and Warren].

1.1 Mean Value Coordinates

Similar to [Ju et al.(2005)Ju, Schaefer, and Warren|], we note p[z] a parameterization of a closed (d — 1)-manifold mesh (the
cage) M embedded in R?, where z is a (d — 1)-dimensional parameter, and n, the unit outward normal at z. Let 7 be a
point in R? expressed as a linear combination of the positions p; of the vertices of the cage M:
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where )\; is the barycentric coordinate of n with respect to the vertex 1.
Let ¢;[z] be the linear function on M which maps the vertex i to 1 and all other vertices to 0.
The definition of the coordinates \; should guarantee linear precision (i.e. 7=, X\ip;).

Similar to [Ju et al.(2005)Ju, Schaefer, and Warren|, we note B, (M) the projection of the manifold M onto the unit
sphere centered around 7, and dS,(z) the infinitesimal element of surface on this sphere at the projected point (dS,(x) =

7(17'[;”[]“”)7”:* dz in 3D)

Since [, (M) M%Zldsn(x) = 0 (the integral of the unit outward normal onto the unit sphere is 0 in any dimension d > 2),
n
the following equation holds:
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By writing plz] = Y, ¢s[z]p; Vo, with Y. ¢;[x] = 1, we have:
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The coordinates \; are then given by:
S0 Bt |p[z] a1 19 (@)
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and the weights w; such that \; = wa - are given by:
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This definition guarantees linear precision [Ju et al.(2005)Ju, Schaefer, and Warren|. It also provides a linear interpolation
of the function prescribed at the vertices of the cage onto its simplices and it smoothly extends it to the entire space. This
construction of Mean Value Coordinates is valid in any dimension d > 2. In the following, we present their computation in
2D and in 3D, as they were introduced in [Ju et al.(2005)Ju, Schaefer, and Warren].
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Figure 1: Spherical edge E (left) and triangle T(right).

1.2 3D Mean Value Coordinates computation

The support of the function ¢;[x] is only composed of the adjacent triangles to the vertex i (noted N1(7)). Eq. [l| can be
re-written as w; = > e () wl’, with

T _ bi[7] "
Y= /B,,,(T) Ip[z] — Tl|dsn( ) @

Given a triangle T with vertices t1, t2, t3, the following equation holds:
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The latter integral is the integral of the unit outward normal on the spherical triangle T = B, (T) (see Fig. . By noting

T

the unit normal as n] = lN—Tl, with NI £ (pt,,, — ) A (Pr,,0 — 1) (see Fig, m? is given by (since the integral of the unit

i

normal on a closed surface is always 0):
1
m’ = E iefnf (4)

As suggested in [Ju et al.(2005)Ju, Schaefer, and Warren|, the weights wg can be obtained by noting A7 the 3x3 matrix
{pt; = 1, pt, — M, pt; — N} (where * denotes the transpose):

T T Tyt _ 271 T
{wtl,wtz,wtg} =A -m

Since Nl-Tt “(pe; =—m) =0 Vi# jand NiTt - (ps, —m) = det(AT) Vi, the final expression for the weights is given by:
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where Support(T) denotes the support plane of T, i.e. Support(T) = {n € R3|det(AT)(n) = 0}.

1.3 2D Mean Value Coordinates computation

—1
1 0
In 2D, the orientation of an edge E = ege; of a closed polygon is defined by the normal ng: A

Let I5 be the 2 x 2 identity matrix and R% the rotation matrix

R% (pe1 - peo)
|pe1 - peo'
It defines consistently the interior and the ezterior of the closed polygon. Then, similarly to the 3D case:

ng-(pej—n):mEzz:nf (5)

ng =



with:

NE
ny = INJElv Ny’ = Rz (n—pe), NI = =Rz (n—pe,)
J
Therefore:
m¥? = Rz ( 1= Deg 1= Pe, ) (6)
2
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Since (pe, —n)" - Nf =0 (Fig7 we obtain w¥ with:

t
wp = N (7)
. (Pe; — M) - Nf{-l

2 Derivation Overview

In the following, we present the main contribution of the paper: the derivation of the Jacobians and the Hessians of Mean
Value Coordinates. In this section, we briefly give an overview of the derivation.

Let f: M — R? be a piecewise linear field defined on M (in 2D, M is a closed polygon, in 3D, M is a closed triangular
mesh). As reviewed in the previous section, f can be smoothly interpolated with Mean Value Coordinates for any point 1 of
the Euclidean space:

f(ﬁ):ZAi'f(pi)

Then, the Jacobian and the Heisian of f, respectively noted Jf and H f, are expressed as the linear tensor product of
the values f(p;) with the gradient 7 \; and the Hessian H\; of the coordinates respectively:

{ Jf =Y f) - N
Hf =3 f(pi) HN
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Then, the Hessian can be obtained with the following equations
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The above expressions are general and valid for the 2D and 3D cases. Thus, in order to derive a closed-form expression

H);

of the gradient and the Hessian of the Mean Value Coordinates \;, one needs to derive the expressions of yw; (Eq. [8) and
Huw; (Eq. E[) The expressions of these terms are derived in Sec. and Sec. respectively for the 2D case and in Sec.
and Sec. [4.3] for the 3D case.
Properties
Functions interpolated by means of Mean Value Coordinates as previously described have the following properties:

1. they are interpolant on M

2. they are defined everywhere in R"

w

. they are C'*° everywhere not on M

=~

. they are C on the edges (resp. vertices) of M in 3D (resp. in 2D)



Since these are interpolant of piecewise linear functions defined on a piecewise linear domain, they cannot be differentiable
on the edges of the triangles (resp. the vertices of the edges) of the cage in 3D (resp. in 2D). Although, as they are continuous
everywhere, they may admit in these cases directional derivatives like for almost all continuous functions, but as they
are of no use at all in general, we won’t present in this paper these quantities. Recall that the directional derivative is the
value 0f,(n) = lim._,o+ M, with u € R3, ||u|| = 1, e € R, which strongly depends on the orientation of the
vector u where the limit is considered. These derivatives cannot be used to evaluate the neighborhood of a the function
around the point in general with a single gradient (or Jacobian if the function is multi-dimensional).

In this paper, we provide formulae for the 1% and 2" order derivatives of the Mean Value Coordinates everywhere in
space but on the cage.



3 MV-Gradients and Hessians in 2D

In the following, we note (pq) the line going through the points p and ¢, and [pg] the line segment between them.

3.1 Expression of the MV-gradients
By differentiating Eq. [5] we obtain:

_>
> (e, —m) - vwE' = ImP + > wE I = B (y) (10)
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JmF is given by differentiating Eq. @

JmP = Rz ( L __ b
2 |77_peo‘ |77—pe1|
_ (77 _peo) i (77 _peo)t (11)
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Then, in the general case where (p., — 1)t - Nﬁl # 0, the gradient of the weights is given by the following expression:

2 E BE". Nﬁd
vwei = t E
(pei ) 'Ni+1
V0 & (PegPer) (12)

3.2 Special case: 1 € (DeyDey), & [PeoPes
The special case where (p., —n)" - Nﬁ_l = 0 only occurs when 7 lies on the same line as the edge E (7 lies on the support of
the edge E, noted Support(E) = (peype,)). As discussed in Sec. [2] we omit the case where 1) € [ege1]. Since the length of E
is zero (see Fig. , for all § € (PegPey )y & [PeoPer]s weEl (m)=0Vi=0,1.
Similarly, ng and ng are collinear, then:
5 _ 0wl (n+eng))

%
Jyw, = —————>  ng
e Oe le—0

A closed-form expression can be derived from the above equation with Taylor expansions. For conciseness, the details of this
derivation are given in section [9] and only the final expression is given here:
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V1 € (PeoPer)s & [PeoPe: ] (13)

3.3 Expression of the MV-Hessians
By differentiating Eq. [10| successively with regards to ¢ = {x,y}, we obtain:

— pt - gt
Zac(pei - 77) ' ng + Z (pEi - 77) : 3c(Vw£ )
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with
0F =%, ( ¢ ) FuE +0n(ImP) + T, 0,wE) - Iy
0

-
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Expressions have been provided for all of the terms appearing in the above equations, except for the derivatives of JmP.



Expression of d.(Jm®)

By differentiating Eq. we obtain:
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where §, = ( (1) ) and 0, = ( (1) ), and X denotes the ¢t? coordinate of the vector X.

3.4 Final expression of ng

From Eq. ((pe; — )t - NF =0, see Fig. |1)) we obtain:
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Finally:

3.5 Special case: 1 € (peyDe;), & [DegPes ]

— A(wF
When 7 lies on the support of the edge E, ywZ (n) = dwfng, where dwf = wle_ﬂ)

the special case of Sec. (see section |§| for the derivation of dw?).
%
To compute the value of the Hessian, it is however not enough to write ny - v(dwg)t, and this last value is not
a symmetric matrix. By deriving the expressions of the gradient and the Hessian (writing it by replacing the integration

on the unit sphere by the integration on the manifold, using dS, (z) = %dm in 2D, see Sec. , we can see that

is a scalar term obtained in

swf = —/ _dilalns sdz
’ reEE |p[l‘] - 77|
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The second integral is 0 in the particular case of 1 € (DeyPe, ), & [PeoPe,]s since (p[z] — )t - n,Vaz € E, thus we can identity
the first integral to be dwPng, dw? being the function computed in Sec.



If we differentiate the gradient to obtain the value of the Hessian, we can see that

¢ilz]ng - (n — pla])*

Heo =3 o™ Bla P o
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Once again, we make the remark that the second and the fourth integrals are 0 in the special case of ) € (PeyPe; )s & [PegPey |,

ﬁ
and we can identity the first integral as ng - V(dwfi )t in that particular case only (and the third integral is the transpose of
the first).
Finally:

Huwf =ng- g(dwf)t + g(dweE) -nk
v’r] e (p€0p€1)7 ¢ [p€0p€1]
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4 MV-Gradients and Hessians in 3D

4.1 Expression of the MV-Gradients
Instead of differentiating Eq. [2[ (which involves the computation of an integral), we derive the Jacobian from Eq. [3| (by noting
BT 2 Jm" + 37, wi - I3):
’ =, Tt T
> (o, —m)-vuw, =B (16)

J

From the above expression, we obtain: (again, NiTt “(pt; —n) =0Vj #iand NiTt - (pt, —n) = det(AT) Vi, see Fig.

t
= 5 BT . NT
VW T et (AT) (17)

Vn & Support(T)

T

At this point, the Jacobian of the vector m” is required for the expression of BT .

Expression of Jm?”

From Eq. [d we have:

Then, we obtain:

T 2Tt T 7nT
JmT:ZNj - Vb; 0; JN;
AN 2N
(18)
T nT Tt AT\t
_ZGij ~(JN; - Nj)
T
- 2|N}[3
Derivatives of N}
From the expression of N jT (Sec. , we obtain:
NP (n+dn) =(p, ., —n—dn) A(pe,,, — 1 — dn)
:(ptj+1 - 77) A (ptj+2 - 77) + (thJrz - ptj+1> A d77
:N]T(W) + (ptj+2 - ptj+1) A d77
Therefore
JNJ'T = (Ptys = Pry)in] (19)
where ki) is the skew 3 x 3 matrix (i.e. k[,\]t = —kin)) such that ki -u=kAu Vkue R3.
In particular, we see from Eq. that N ]T admits a ull second order derivative.
_>
: T
Expression of v0;
%
The term VGJT can be derived from the following expressions:
gl — T T a1y —mAPy -] INT|
sin(0;) =55, 55 = IPt; 1o —n\-lpt;rl—nl - \pej+2—n|-J|ptj+1—77\
Ty _ ~T T a P (e —n)
cos(0j) =Cj -, C = oy 0 —nl oy
— —
cos(0]) - 0] = ST (20)
— —
—sin(67) - o7 = vCT (21)



— — -
V0] can be evaluated with Eq. [20 when 6] # 7/2, and with Eq. [21| when 67 # 0,7. 7S] and 7C] are given by the
following expressions:

35; _ JNT'. NT
INT1 - 1ptyo — 1l - [Pty — 1l
INST - (0= i)
Pty — 1B Ipey — ]
INTT- (0= pe;)
Pty — 1l Pty — P
Jgr_ JNT'.NT

’ ‘NJT| : |ptj+2 - 77‘ : |pt]'+1 - 77|
(N = DPt;40) - sin(GJT)

. 2 (22)
‘ptj+2 - 77‘
- (77 - ptj+1) ’ sm(GjT)
‘ptj+1 - 77‘2
- T 27’ - ptj+1 - ptj+2
tiv2 = T Pt T
Top nl-lp Ul
M =pyn) Py =)' (P — 1)
‘pt_7‘+2 - 7’|3 ! ‘ptﬂ_l - 7]'
=) (P =) (P, =)
‘pt_7‘+2 - 77| ! |ptj+1 - 77|3
gCT _ 277 - ptj+1 - ptj+2
I |ptj+2 - TI| ' |ptj+1 - 77‘
(77 - ptj+2) ) COS(HJT)
2 (23)
|ptj+2 - 77‘
o (77 - ptj+1) : COS(HjT)
|ptj+1 - 77‘2
From Eq. 20| and 21], we obtain:
TN QT o (gTND AT g TN AT | i (gTN\2 T _ 20T
cos(0; ) S; —sin(0; )V C; =cos(0;)*v0; +sin(8; )" v = V0,
— —
And by replacing the expressions of VS;I and VC]T on the left side of the equality by those of Eq. [22| and
t .
— cos(HJT)JN]T . NJT 51n(93)(2n — Dtjyn — Pt; 1)
vl = T
‘ptj+2 - 77||pt]-+1 - 77||Nj | ‘ptj+2 - ’r]||ptj+1 - nl
. t .
- cos(HJT) sm(HJT)JNjT : NJT B 51n(9JT)2(2n — Ptjyn — Pt; 1)
IN] |2 [N/
= 7 cos(GjT)sin(GjT)JNjTt -NT
i T INTP2
! (24)

o Sln(e?)2(27] - ptj+2 - ptj+1)
N}

%
At this point, an expression for VHJT has been provided. To complete the expression of Jm”, Eq. 24 and |18 need to be
combined:

10



- cos(67) sin(87)NT - (JNT' - NT)!
Jm” = Z 2[NT3
7 J

B Z sin( 0T 2NT (21 = P10 *Ptﬁl)t
2INf |2
T 71N T
0; JN;
T
2[NT|

T nT Tt T
0 N - (JN; -Nj)t

Z . :
2[NT P

Final expression of Jm”
We obtain the final expression of Jm” (1) as:

er(0T)NT-NT*.JNT
J 2(|pt7+2 nllpt]+1—nl)

JnT = .

t
_Z‘ j (2n— Ptjiq ptj+2)
J 2(Ipej o —nllpe;  —mD)?
Y e2(07)JNT (25)
7 2lpe; o —nllpe;q —nl

where e (z) = % and ex(z) = sm$(

x
Given the final expression of JmT (see Eq. , we recall that th can be computed with the following expression:
= Tt NT
th{f = 75&(,4]\;1) (with BT = JmT —l—Z wt I3).

4.2 Special case: n € Support(T),¢ T

The expressions provided so far admit degenerate cases when det(A”) = 0 (see Eq. . Similarly to the 2D setting, these

cases only occur when 7 is lying on the support plane of T, noted Support(T).
For n € Support(T),¢ T, as discussed in [Ju et al.(2005)Ju, Schaefer, and Warren|, given small steps in the support of

T, the weights are set to 0 (since 1 + dn € Support(T)): ¥(n + dn) € Support(T), ¢ T, wi (n + dn) = 0.
Therefore, the weights only evolve in the direction of the normal of T

6 T
W € Support(T), ¢ T: Jwl = W -

le—0

T t T
To evaluate the above expression, we consider the Taylor expansion of wf (n+ eng) = N ﬁ;ﬁ?@i;g;ém) with respect

to e.
The details of this expansion can be found in section [7/} The final result is given by:

6 T Z 62(0 )(pt1+2 pti+1)t ! (pt_j+2 _ptj+1)nT \
J

Wy, = —
b 4|T||pt_7‘+2 - antj-H - 77|

t
,Z e1(0 T)Ipt_]+2 _ptj+1|2NiT NJT
i 8|T|(|th+2 77||ptj+1 - 77‘)3

Tt NT
+ % T =
j 4|T‘(|pt]‘+2 - 77|‘pt3+1 -

k Vn € Support(T), ¢ T (@/

4.3 Expression of the MV-Hessians

nr

nr
n|)?

1 0 0
Wenoted*=1 0 |, 8= 1 |,0*=1] O
0 0 1
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Derivation of Hthi

By differentiating Eq. [16| successively by ¢ = x,y, and z, we obtain:

Za b~ 1) vwl’ +Z P =) 0(Vul") = 0.(Tm") + 3 Bu(w]

Therefore

> (o, —m)- 0 (th h=cl

J
_)
with CT 2 6¢- Y. wl ' + 0.(JmT) + 3, de(w]) - Is.
All these terms have been expressed previously, except for the derivatives of JmT.

Expression of the derivatives of Jm®

Given a vector k € R?, we note (k) (), (k) ).
By differentiating Eq. [25( term by term, and using Eq. |24| for VGT we obtain the final expression of 9,(Jm™)

60(JmT) :Z _Z

J J

T\ AT T\t T
+Z 61(9]- )Nj -8C(Nj) -JNj
J

2(|ptj+2 - 77||ptj+1 - 77|)3
t t
_2361 ) =Pty )N} - N - JNT _2361 )N = Ptyi) NS - N - INT
2|pt]+2 77| |ptj+1 77|5 2‘pt]+2 - 77| ‘pt]+1 - 77|

(k)2 its components inz,y, and 2.

t t
2(|ptj+2 - 77||ptj+1 - 77\)5

>

J

t
64(91'T)(277 Pty — ptﬁz)(C)NjT ) NJ'T ) JNJ'T
2(|ptj+2 - 77||ptj+1 - 77\)4

e1(67)9.(NT) - NF" - JNT
(|ptj+2 77||ptj+1 - T’DS

_ Z 277 Ptjpq — ptj+2)t Z (77 - ptj+1)(C)Nj ) (277 —Ptjy1 — ptj+2)t

|ptj+2 anthrl - 77|)2 j |ptj+2 - 77|2|ptj+1 - 77|4
t
+Z 77 pt]+2 c)N (2n_pt]‘+1 _ptj+2)t +Z 65(0‘31)(JN}1 Nf)(C)JNf
|ptj+2 77| |ptj+1 - 77|2 2(|ptj+2 - 77|‘ptj+1 - 77|)3

J

. Z 66 277 ptj+1 ptj+2)(C)JNjT - Z (77 - ptj+1)(0)e2(0,]r)JNjT
|pt]+2 'f]Hpthrl - 77|)2 2|ptj+2 - T’Hptj+1 - 77|3

77 th+2 c)eQ(eT)JNT NjT ) 5Ct

2|pt]+2 - 77\ |pt]+1 - 77\ j |ptj+2 - 77|2|ptj+1 - 77|2

p3

(27)

where e3(z) = (3cos(z)(cos(x)x — sin(x)) + cos(x)sin(x)3)/sin(z)?, es(x) = (3(cos(x)x — sin(x)) + sin(x)3)/sin(z)?,

es(x) = (sin(x) — zcos(z))cos(x)/sin(z)3, and eg(x) = (sin(z) — wcos(x))/sin(x).
As previously discussed, | N jT | can become close to 0 only if HjT tends to 0 or .

The first case corresponds to 7 lying on the same line as one edge of the triangle, but not on the edge. All the functions
e;(x) in this expression admit well-defined Taylor expansions, given in section @ As these expressions are shown to converge,

they provide a practical way to robustly evaluate d.(Jm”) near the support lines of the edges of the cage triangles.

The second case corresponds to 7 lying on one edge [py;,,pt,,,] of the triangle T'. As discussed in Sec. [2, we do not provide

expressions of the derivatives in that case (for points lying directly on the triangle T').

When 7 lies exactly onto the support plane of a triangle T', we cannot use the same strategy to compute the Hessians.

These special cases will be discussed in the next paragraph.

Final expression of Hw/

From Eq. [27] once again we obtain

— cTt NT

Ox(Vwl) = Gerar
— c,Tt.N.T

dy(vwl) = ghory ¢ V0 & Support(T).
— CTt_NT

0:(Vwi) = Farar
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Since

0. (ul)
GZ(thq;)t
finally we obtain
. NT* . 9, (JmT) . t
Hw; = NiTt-ay(JmT) + — (NZT (ZVU} —|—va NT
det(AT) ¢ det(AT)
NI -9, (JmT J
Vi & Support(T) (28)

4.4 Special case: n € Support(T),¢ T

Following the same strategy than in Sec. for the 2D case, we derive the value of the Hessian in the particular case of
n € Support(T), ¢ T as:

[ Huw! = sdwlT “nk +np - sdw?t Vn € Support(T), ¢ T (29)}

— —
The details of the derivation of \7dw! can be found in section |8 The final expression of 7dw? is given by:

t
Z €1(9T)((ptl+2 Dtiyq )t : (ptj+2 _ptj+1))JNjT : NJT

—2|T|§>dwiT = 3
2(Ipt;2 — nllPe, — )

J

_ Z ((pt11+2 - pti+1)t ' (ptj+2 - ptj+1))(277 - ptHg - ptj+1)
2(|ptj+2 - 77||ptj+1 - 77‘)2
t t
67(9f)|ptj+2 - ptj+1|2(NiT : NJT)JN]T : NJT
4(|pt_7’+2 - 77||ptj+1 - 77|)5

J
t
+ Z |ptj+2 — Ptj |2(NZT ' NJT)(277 — Pty — ptj+1)
2(‘ptj+2 - 77||ptj+1 - n|)4

|pt]+2 pt7+1|2(JthN?+JN?th)
(|pt7‘+2 - 77||pt_7+1 - 77|)3

+Zel
N
Jrz |pt

t
n Z COS(HJ‘T)(NZT : N]‘T)(277 — Dty — ptj+1)
[ (|ptj+2 - T]Hptj+1 - 77|)3

R

where 67(1‘) _ 2cos(x) SlIl(.L)Sl-;?iS)ISH(.L)COS(L)—J)

Tt NT)JNTt NT
42 nllptj+1—77|)

(JNT"-NT + JNT' - NT)
2(|ptj+2 - 77‘|Ptj+1 - 77|)2

5 Continuity between the general case and the special case

We obtained the formulae for the gradient and the Hessian of w} () in the general case, when the point of interest 7 does
not lie on the triangle T', and in the special case when 7 lies on it.

As MVC are C*° everywhere not on M, these formulae are guaranteed to converge, since in particular, the gradient and
the Hessian are continuous functions everywhere not on M.

The same holds in 2D where the distinction is made for the computation of w(n) whether n lies on the line supported
by the edge F or not.
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6 Taylor expansion formulae of ¢,

In the paper, we refer the reader to several functions noted e;(x). We give here their corresponding Taylor expansion formulae

that we obtained using Mapple. We note “ =o; ” the equality of the equivalent around 0.

cos(z)sin(z) —
e@) = sin(z)3
o 2 1, 17, 29 1181 o 1393481
7375 420 4200 1108800 9081072000
763967y, 133541, 3821860001 (30)
36324288000 48117888000 10751460894720000
_ 115665628927 5 8388993163723 20 3868248770144093 22
2601853536522240000 1538810520171724800000 5881333808096332185600000
B 3682368472021807 2 269101073327718589 254 0 (%)
47050670464770657484800000 29238630931678908579840000000

~ sin(z)
31 127 ¢ 73 . 14477

1 7
ol g2y e 6
O T 57 T 3607 T 151207 T 6048007 T 3421440° ' 653837184000
8191 14 16931177 46 STA9691557 91546277357 0 (a)

37362124800 + 762187345920000" 2554547108585472000 401428831349145600000
3324754717 29 1982765468311237 24

* 143838775912161280000° | 846912068365871834726400000"
22076500342261 2 65053034220152267 540 ()

93067260259985915904000000 ¢ 2706661834818276108533760000000

_3 cos(z)(cos(x)x — sin(z)) + cos(x) sin(z)?

ea(2) sin(z)>
L2 1, 3, 1349 o %67T67 o 1752539
T 5T 35 140 138600 100900800 3027024000
204708709 212 4 862222247 14 1359125231539 16 260976933802873 18 (32)
1852538688000 44797753728000 433642256087040000 538583682060103680000
529743964972219 20 118166997202277 29

* 7370002491348787200000° | 11464588319875891200000
SSSITTASTHAOGITA93 o0 (29)
4093408330435047201177600000

3(cos(x)x — sin(z)) + sin(x)?

ea(w) = sin(x)3
2, 2, 4 2 o 2med 4,
T TET T 91" T 295" T 603" T 64496257 66825 (33)
2936y, STI34 g G9SMA o 310732
3618239625 84922212375 5373085843125 19405276970625
1890912728,y 2631724 4 2TUDALTG o ) oy
975456860390128125 11378955872851875 095861834515125703125

(sin(z) — x cos(x)) cos(x)

sin(x)3
1 1, 53 , 367 , 5689 TI08361

TOF3 730" T 25207 T 7H600° 66528000 | 54486432000

es(x) =

21539 g, BLITATL g, 236480428279 o 5920710926423 5 (g
59439744000 3175780608000 709596419051520000 140500090972200960000
_ AS228304603127 22394113150293893
9232863121030348800000 35288002848577993113600000
531403859736209 o 1572992236821149549 % 4 0 (%)

T 6099273292279932518400000°  175431785590073451479040000000
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_sin(x) — x cos(z)
e(r) = sin(x)

1 " 1382

= }x2+ix4+lx6+ x8+ x T
{0}3 45 945 4725 93555 638512875
N L 3617 g 87734 L8 349222 20 (35)
18243225 162820783125 38079295480125 1531329465290625
310732 0o 472728182 o 2631724 ”

13447856040643125 +201919571963756521875$ 11094481076030578125
13571120588
2840 (m30)

564653660170076273671875

_2 cos(z) sin(x)? + 3(sin(z) cos(z) — )

er(x)

sin(x)®
L8 4, 1, 210 29509 o 157301 ., 16079783
O T TR T 7Y T 69307 T 50450407 151351200 92626934400 (36)
_ 61760113 L4 30359523011 16 16640264468327 18 617766523408427 420
2239887686400 7227370934784000 26929184103005184000 7001587866781347840000
109430933144243 29 342143652330193331

33‘24 T o) (125)

 8011111830448988160000°  204670416521752360058880000

Discussion The Taylor expansions of these functions may not give directly a result with the expected error (i.e. of order
2™V) when computing them in this straightforward manner. This is caused by floating point imprecision. Still, they can be
approximated with any precision using look-up tables, e. g. using an infinite precision libraryﬂ

1For instance, see the GNU Multiple Precision Arithmetic Library, http://gmplib.org/
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7 Taylor expansion of w} (n+ eny)

We present here the details for the Taylor expansion to the order 1 of w{ (n + eng) = NiT(Z:&TT)(;]T;(Z;mT), in the special
case where n € Support(T), ¢ T.
The determinant of a basis of R? is the volume of its generated parallelepiped, and the following expression holds:
det(AT(n + ent)) = —2¢ - |T| (37)

where |T| is the area of T. All that is left is to write the Taylor expansion of NI (n + enz)! - m” (1 + enr) to the order 2.

NI+ enp)t - mT (n+ ent) ZG n+ eng) - NF(n+eng)t - jT(n—i—enT)

NjT(U +enr)

,Zo 77+enT (77+€71T) m
J

We develop Qf(n + enr) to the second order:

— 7t €
0?(77 +eny) =0+ ew}“ “np 4 Enéw . HGJ-T -np + o(€?)

- — -
From the expression of VCJT, we know that VC’jTt ‘ny =0V n € Support(T). Therefore, VH;‘-Ft ‘ny =0V n € Support(T),

and
2

Gjr(n +enr) =0; + %nép . HHJ»T “np + o(€?) (38)
We develop | N (1 + eng)| ™" to the second order:
t t
1 _ 1 _G(JNjT 'NjT)t~nT_e nT (JNT JNT)
INJ'(n+ent)|  [N]] INJ 2 2 [N

by (JNI'-NT.NT' . JNT) - ,

5 o+ o(e?)

2 |N]T\5
We can start simplifying this expression by noticing that (JNJT . NjT)t - ny = 0 and nk - (JNjTt : JNJT) snp =

|JN]T . nT|2 = |ptj+2 — Ptj |2'
Therefore the development of the function n — |N JT |~1 in the direction of np is equal to

1 1 62 ‘pt'+2 7pt'+1|2 2
= - = . +o(e 39
Naren] N2 N ) 39

It leads to the following development to the order 2 of NI (n + eng)t - m™ (n + ent):

1 e |pti — Di; |2
e — S P Pl

2
—nk. - H@T N T3
NTI T2 N

1
NT (g + en) Ty + enz) =S (VT + cINT )t 5 (NF + eI )0 +

J
+o(€”)
We note that (JN; -np)' - N; =0 and N} - (JN; - np) = 0, since Nj, and np are colinear Vk, Vn € Support(T).
We also note that
(JNi-np)' - (JNj - n7) = ((Priye = Pro) AT)" - (P10 — Deyyn) Ar)
= (pt-;+2 - pti+1)t : (ptj+2 - ptj+1)
By developing all the terms, we see that all that is left is the order two (plus higher orders, that we do not write, since
they are negligeable in front of €2).

07 (Dtiyn = Priy)' - Py — Dijyy)
T t T _ 2 7 i+2 i+1 j+2 j+1
N/ (n+enr)' -m” (n+enr) =¢ E JINT]

J

t
np - NI NT

nt. . HOT .
ey R
. 4|Nj|

07 i, — Dty |2NF - NT

2 J Jj+2 Jjt1 ? J 2
—€ § - + o(e

- AINTP3 ()
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07 (Pt;g—Ptip1) " (Ptj 10—t 1)

T t T 2 t; ¢ . .

N/ (n+eng)" -m* (n+eny) = ey :j i \Ptiyo EENTI jt2 "Ptip
: J

T2t T T 2
+e2 Z (INj |"nr"-HO; nr—6; |pt; o —Pt; 1 17)
j ANT?

+o(e?) (40)

Tt AT
-NT"-N!

This expression is not well defined when 35 / 9jT = 0. In fact, |N jT | ~ GjT around 0, and therefore the term under the first
sum tends to a constant when GjT — 0.

%
By combining this expression with the one of H 0? we will obtain the final expression of 7w/, and we will be able to
prove that the j-th term under the second sum tends to 0 when HJT — 0.

. .. . T _ Ty _ <ptv+1_77|pt~+2_77> T - T = Tt . T T _ T
By differentiating twice C = cos(0; ) = \ptjﬂfn\lp:jﬂfnl , we have that —cos(0;) - v0; - v0; —sin(0; )HO; = HC;,

with
SCT _ 277 — Pt — Ptjgo _ < Pty — 77|ptj+2 -n> (77 - ptj+2) _ < Ptjpq — 77|ptj+2 -n> (77 - pt]‘+1) (41)
T Py =l g =l Pty = 0P |Peyps — Pt = 0P |Peype — 7
and
HCT = 213 o (277 - ptj+1 - ptj+2) ) (77 - ptj+1)t o (277 - ptj+1 - ptj+2) ' (77 - ptj+2)t
! |ptj+2 - 77| ' ‘ptj+1 - 77| |ptj+2 - nl : |ptj+1 - 77|3 |ptj+2 - 77|3 : |ptj+1 - 77|
N 13 < ptj+1 - n‘ptj+2 -n > o (77 - ptj+2) : (277 _ptj+1 _ptj+2)t
|ptj+2 - 77|3|ptj+1 - 77| |ptj+2 - 77|3|ptj+1 - 77|
+ < Dty — 77|ptj+2 -n> (77 _ptj+2) i (77 —Pt; )t + 3 < Pt — 77|ptj+2 -n> (77 _ptj+2) ’ (77 - ptj+2)t (42)
‘ptj+2 - ’rl|3‘ptj+1 - 77|3 |ptj+2 - 77‘5|ptj+1 - 77‘
B 13 < ptj+1 - n‘ptj+2 -n > o (77 - ptj+1) : (277 - ptj+1 _ptj+2)t
|ptj+1 - n|3|ptj+2 - 77| |pt]‘+1 - 77|3|ptj+2 - 77|
4 < ptj+1 - n|ptj+2 -n> (77 _ptj+1) ) (77 - ptj+2)t + 3 < ptj+1 - 77|ptj+2 —-n> (77 _ptj+1) : (77 - ptj+1)t
‘ptj+1 - ’rl|3‘ptj+2 - 77|3 |ptj+1 - 77‘5|ptj+2 - 77‘
%
Since (py, — 1)t -nr =0 Vk,Vn € Support(T), we have that VGJ-Tt -np = 0 and we obtain:
—ngt - HCT - n
nTt'HQT"I’LT: T_ T] T
J sin(6 ) (43)
cos(6]) cos(6]) 2

sin(0]) |y, — 02 sin(0D)|py,, —nl* sin(0])Ipr;, . — 0l — 7l

We now focus on the expression of [N [*np’ - HOT - ny — 07 |py, ., — pr,.,|* that appears in Eq.

|NJ-T|27’LTt . HGJT ‘nr — 9;|ptj+2 — ptj+1 |2
_ |N]T|2 Sin(ejr)(cos(e,]r)('ptj+2 - 77|2 + |pt]‘+2 - T]|2) - 2|ptj+2 - anthrl - T]|)
Sin(ef)2‘ptj+2 - 77|2‘ptj+1 - 77|2

:Sin(of)(cos(of)(|ptj+2 - TI‘Q + ‘ptj+2 - 77|2) - 2|pt]‘+2 - 77||ptj+1 - 77|) - ef‘ptj+2 — Ptj |2

- 9?|ptj+2 — Pt |2

Since ‘ptj+2 — Pt |2 = |ptj+2 - 7]|2 + |pt]‘+1 - 77|2 - 2COS(9JT)|ptj+2 - 17||ptj+1 - T]‘? by Substituting |ptj+2 - 77|2 + |ptj+1 - 77|2
in the previous expression, we have

‘NJT|2nTt ' HQJT “nr — 0f|ptj+2 - ptj+1|2
=sin(0] ) cos(0] ) (1p1; 42 — Peyi|> +2008(67 ) pe 0 — nllpe; 0 — 1l = 2lpeyee = 0llpe; 0 — 010 = 65 [Pty 2 — Prya |
SIG; ) CoS\O; NPty 2 — Ptjpa COSU; )IPtjro — MPtjpr — 7N Dtjro = MIPtjyr — M)V = V5 [Ptjro = Pty
—(sin(07) cos(07) — 07 pe, o — iy |2 + 2(cos2(67) — 1) N7
:(sin(HjT) cos(HjT) - GJT)|ptj+2 — Ptjr |2 — ZSinz(HJT)|N]T|
This expression is an equivalent of 9;‘4’13 around 0, which proves that the problematic term under the second sum in the

_>
expression of NI (n + eng)! - mT(n + ent) tends to 0, and can be neglected in the computation of ng; in the special case
of n € Support(T), ¢ T.
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Finally, Vn € Support(T), ¢ T:

with

_>
T T
Vwg, = dw; nr

—2[T|dw] = 3 €207 )iy s —Priy 1) (Prjya —Prjy)

J 2[pe; o —nllPe; 4, —7]
T Tt T
Z el(ej )lptj+27ptj+1‘2Ni 'Nj
I Alpey o —nllpe —nl)?
Tt AT
NI N1

— . J
Z] 2(Iptj o —nllpe; —nl)?
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8 Expression of the Hessian in 3D, in the case of alignment with the triangle
T

We have seen that if n € Support(T),¢ T, the gradient of the unnormalized weight with respect to T wf (n) is given

ﬁ
by th{? (n) = dwl(n)nr, with dw!(n) a scalar function whose form was presented previously in the paper (see Eq. .
In order to get the Hessian of the unnormalized weight with respect to T, we need to differentiate dw! since H wy, =

— — —
vdwl -nb +nr - vdw?t (and not simply sz: = vdw! - nk, see discussion Sec. .

5(wt (ntent))

%
Expression of y7dw] We recall that we obtained the expression of dw} 5e le—0

as

T
—2|T|dw! = Z e2(0; ) (ptiys — Ptici)' (Peyye = Ptyys)
2 Ptjia — 77||ptj+1 - 77|

J

+Z€1

NIt NT
_Ej: (

2 |ptj+2 - 77||ptj+1 - n‘)Q

t
|th+2 pt1+1‘2NT NT
‘pt1+2 77Hpt]-+1 - 77|)3

%
We need to differentiate this expression in order to compute 7dw?. We chose to express it by putting back the various
terms sin (GT) in the fractions before differentiating, so that only terms of the form |N; T|* remain as the denominator of the
fractions. We also note upm = (Ptys — Ptrsr)’ - (Ptyss — Ptpys) to simplify this expression. We obtain

0T u;; e (07 Juj; N NT sinQ(HT)N-Tt -NT
— 2|T|dw] = R 2 o 46
(Tldw! = 5/ T 22— aN TP X oI (46)
J J J J j J
with & (z) = cos(z) sin(z) — = (and therefore iiel (z) = —2sin?(z)).
By differentiating Eq. ., we obtain that
%
- ui; 707
—2|T|vdw] = =LA
T =3 e
Tt NT
-3 AT
2‘NT|3
sin(f ujj(NTt NT)v 67 -
toNT Tt AT
e1(07 )u;;(JNJ - NI+ INT" - NT)
D
+Z ANT? =
3¢1(07)uj;(NF' - NT)JNT' . NT .
sin(67") cos( GT)(NTt NT)vﬁT
- Z NI .

sin?(07)(JNT' - NF + JNT' - NT) -
_Z 2|NT|2 Sl

sin?(07)(NL" - NT)JNT' . NT
> R -

J

Here we put a letter [X|] to help the reader follow through the differentiation.
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%
By replacing ijT by the expression given in Eq. we have ([X1] — resp [X2] — indicates that the part of the equa-

. . . L= . 07)sin(0T)JNF*.NT .
tion came from previous equation [X]| when replacing ijT by the first (i.e. cos(, )SIT](V%% i —3) — resp second (i.e.
J

. sin(GJT)Q(QT]*pt]-Jrz —Ptjyq) )

T — part of its expression)
i

icos(0T)sin(0T)JNT" . NT
—2\T|§>dwiT :Z u;j cos(0; ) sin(0; ) JN; ;

Al
. Q\NTlg A
J
B Z Uij sin? y(2n - Dtjpn — Ptji1) [42]
2|NT|2
Tui JNF' - NT

s e

2u; NT NT cos 0T sin 0T JNTt NT
i (

= c1
t TN wind (T
u]](NzT : N_] )Sln (9_] )(277 _ptj+2 _ptj+1)
" Z 2N 2]
J
(07 uy;(JNT' - NF + JNF' - NT)
+ Z INTP (D]
36107 yuy; (NI - NT)JNT' . NT L
N Z AINT 5
Z sin?(67) cos (GJ-T)(NZ-Tt : N]-T),]NJ.T75 -NT -
|NjT‘4 [ }
sin®(07) cos(07)(NT* - NT)(2n = 1, — P1,.0)
J J 1 J J+2 j+1
* Z INT3 [F2]
sin?(07)(JNT" - NF + JNF' - NT) -
*Z 2NT 2 €]

sin?(0T)(NT' - NT)JNT' . NT
+Z J |N,T\]4 J I (H)
J

J
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We re-arrange the equations together, as

e(d )ul JN NT
_o|T|FdwT —+Z 2\]N.T|3 I_[Al + B]
J
B Z U;j sin (9]-T)(277 —DPtjyo — ptj+1) [B}
- 2INT2
ujea(0T)(NF" - NT)JNT" - NT
_Z 33 4( )( - ) [CI—I—E]
, TS
j J
t TN ind(nT
UJJ(N’;T ' N] )Sln (ej )(27] _pt'+2 _pt'+1)
2 Nt
J
(JNT'-NT + JNF' . NT
DI et i)
AINT]3
sin?(07) (N - NT)JNT" - NT
+ Z J T ‘1 L [F1+ H]
J
sin®(7) cos(@ )(NTt NT)(Qn Dt;o — Ptis1)
7 i+2 J+1
+ Z TP [F'2]
sin?(07)(JNT' - NF + JNT' - NT) -
*Z 2|NT|? ]

Finally,

t Tt T
—2|T|§>dwiT _ Z 61(93 )((pti+2 - ptH»I) ) (ptj+2 _ptH;))JNJ ) Nj
- 2(|ptj+2 - 77||Ptj+1 - 77|)

_ Z ((pti+2 - pti+1)t ! (ptj+2 _ptj+1))(277 - ptj+2 - ptj+1)
2(|ptj+2 - 77||ptj+1 - 77\)2
t t
. Z 67 |pt7+2 pt]+1| (NT NT)JNT NT
(|ptj+2 77||ptj+1 - 77|)5

t
+Z |pt]‘+2 _ptj+1|2(NiT 'N]T)(2n_ptj+2 _ptj+1)
2(‘pt]‘+2 - 77||pt]‘+1 - 77|)4

t t
Pt |P(INT NI + JNT -N]-T)

+ Z €1 (o;r)|ptj+2 - j i
i 4(|ptj+2 - 77||pt,-+1 - 77|)3

(NI NT)INT' N
(|pt_7'+2 - 77||pt_7‘+1 - 77|)4
t
N Z cos(07 ) (N, - NT) (20— Dty — Ptyin)
- (lptj+2 - antHl - 77|)3

(
o>

2 cos(x) sin(x)>+3(sin(x) cos(x)— m)
sin(z)®

2

JNT'. NI + JNI' - NT)
2(|ptj+2 - T’Hptj+1 - 77|)2

where e (z) =
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9 Details of Taylor expansion of w/(n+ eng) in the 2D case

O(w? (nteni))

A(wE (n+ . .
Blwe, (ntens)) To obtain a closed-form expression of e

Expression of 3 we derive the Taylor expansion
€

e—0 le—0’

of wfi (n + eng) with respect to e, using Eq.

t
mP(n+enp) - NS, (n+ eng)

E
w, (n+eng) = 47
1(77 E) (pe’i —n— enE)t ) Nﬁl(n + €TlE) ( )
The denominator of the latter fraction is equal to:
(pei /i enE)t ' fol(’] + GTZE) :(pei /i 6nE')t : R% . (p61'+1 /i enE) . (_1)1
:(pEi - ﬁ)t . R% ’ (p€i+1 - 77) : (_1)i - entE ’ R% : (pel+1 - 7]) : (_1>i
—e(pe, — 1) - Rz -ng- (-1)" + 62n§3RgnE S(=1)
:entE . R% ' (pei - p@H—l) . (71)1
= —¢lE| (48)
The numerator is equal to:
NE(m +eng) - NE,(n+ eng)
E t E i\ E i+1(n E
m +eng) - N; +eng) = 49
We develop N[ (1 + enE)t - NE | (n+ eng) to the second order:
t j i
NP (n+eng) - Niii(n+eng) =(NF (n) + (=1 Rg -np)' - (NF1(n) + e(~1)'Rg - np)
t
=NF(n) - Nier(n) + (=17 nly - N (n)
i t
+e(=1)'N7(n) - Ry -np + € (=1)(Rg -np)' - (Rg - np)
t . .
=NF(n) - Niga () + (=) (50)
1 .
We develop NP (renz)l to the second order:
1 1 (JNF'NP) np
= —€
INP(n+enp)| NP INF|?
e2nly - (JNF' - JNF).n
2 |NE|3
e nly- (JNF'.NE.NE'. JNF).n
9 E
2 |Nj |5
1 , 1
INFI 2INFP3
We obtain the Taylor expansion of m¥(n + enE)t -NE (n+eng) as
t t it 1 1
P+ en)’ - NE L+ en) = 37 (NF0)' - Nega ) + (1) +J+1><|NE‘ - ) +ole)
J J
E( \t z+1( ) (_1)i+j 2
=m~(n) - N; + +o(e”)
il Z QINE INF ()]
z+1(n) (_1)1+j 2
+ + o(€%) (52)
Z QINE INF ()]
We obtain that, for all ) € (pegPe, )s & [PeoPe, |:
t B L
= g NJE(n) “Niiq1(n) (—1)t+J
Vwy; (n) = ( )nE (53)
' ; 2(E[INFm)E BN (@)
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1e+15‘ | T I T I T I T I T I T I T L) i
- HA\err (double)
le+10 |- -
- HA®™ (256bits) ]
- — ]
100000 - AT (double) ]
- 7 ]
1F AT (256bits) -
le-05 | 3
le-10 | 3
le-15 |- 3
le-20 | -
le-25 | -
le-30 | 3
le_35 - 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 ]
le-14 le-12 le-10 le-08 le-06 0.0001 0.01 1 100

Figure 2: Comparison with Finite Differences: the domain are the same as described previously in Fig. 5 of the
paper, and the evaluations are performed on point 0. x axis: size of the stencil for Finite Differences. y axis: difference
between Finite Differences approximations of the derivatives and our formulae. Axes of the plots are in logarithmic scale.

The functions that are plotted are v)\e” \/Z ||v)\ — V/\ FD(T)||2 and HA™ (r \/Z I|H X — H\; FD(T)Hz

10 Comparison with Finite Difference schemes in 3D

In this section we use Finite Differences schemes to derive the gradient and the Hessian of the MVC, to compare with the
expressions we obtained.

A conventional scheme for approximations of first and second order derivatives at point (x,y, z) is the following:
fo ~ flz+h.y, Z) f(w h,y,z)

Fow ™ f(zth, y%) 2f(r y:2)+ ] (2= hy,2)

Fa ™ fz+hy+h,z)— f(w+h7y hZ) f(w h,y+h,z)+f(x—h,y—h,z)
Ty

This scheme requires 19 evaluations of the function in total. Results of convergence of Finite Differences (FD) of the Mean
Value Coordinates derivatives using this scheme are presented on an example in Fig. [2] using double precision and 256 bits
precision (using mpfrc++-, which is a c++ wrapper of the GNU multiple precision floating point library (mpfr)). The domain
is the same as described previously in Fig 5 of the paper, and the plots correspond here to the evaluation made in point 0.

The error functions that are plotted are v)\e”” \/Z Hv)\ - )\ D12 and H ™ (r \/Z |[HX; — HXPO)2.

Note, that these plots are representative of all the experiments we made (i. e. with other cages, at other locations, etc. ).
These results validate empirically our formulae, as the Finite Differences scheme converges to our formulae when the size
of the stencil tends to 0 (Fig. [2, using 256 bits precision). It also indicates that Finite Differences schemes are not suited to
evaluate MVC derivatives in real life applications, as these schemes diverge near 0 when using double precision only (Fig.
blue and red curves). Note, that this behavior is not typical of Mean Value Coordinates, but rather of finite differences
schemes. The choice of the size of the stencil is a typical difficulty in finite difference schemes. Choosing a size which
is too small may introduce large rounding errors [Flannery et al.(1992)Flannery, Press, Teukolsky, and Vetterling}|Squire|
[and Trapp(1998)]. Finding the smallest size which minimizes rounding error is both machine dependent and application
dependent (in our case ~ 0.01 on the example of Fig. . Moreover, its has been shown that all finite difference formulae are
ill-conditioned |[Fornberg(1981)] and suffer from this drawback. We used different schemes to approximate the derivatives
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Figure 3: Comparison with Finite Differences: the domain are the same as described previously in Fig. 5 of the paper.
x axis: size of the stencil for Finite Differences. y axis: difference between Finite Differences approximations of the derivatives
and our formulae. Axes of the plots are in logarithmic scale.

using Finite Differences methods (9 points evaluation + linear system inversion, 19 points evaluation on a 3 x 3 x 3-stencil,
tricubic interpolation on a 4 x 4 x 4-stencil), and that they all diverge in the same manner when using double precision.

The error curves are also similar when looking at the deviation of the gradients and Hessians of the function itself that
is interpolated (e.g. a deformation function), instead of the gradients and Hessians of the weights themselves.

Evaluation against Finite Differences in the degenerate cases

We also performed a validation against finite differences schemes to validate our formulae given in the particular case of the
point 1 lying on the support of the triangles. Fig. [3| presents the experiment.

The functions that are plotted are the same as before, except that we compute the errors not for all MVC weights, but
only for those regarding the triangle on which the point lies.

We can see that the gradient seems to be validated by the experiment, as the error curve goes to 0 when approximating the
gradient with Finite Differences using a stencil’s size that tends to 0. For the Hessian however, we can observe fluctuations
of the error around a value of 10723,

We recall, that the x-axis is the stencil size h, and that the y-axis is the difference between our formula and the finite
difference approximation using the stencil size h.

The finite differences scheme does not seem to converge in this experiment (otherwise, there would
be stabilization of the difference around a value, eventually 0 if it validates our formula, but there is no
stabilization of the error whatsoever, even when using a precision of 20,000 bits for the computation). One
reason might be that using the general formula for the computation of the weights is unstable on the support plane of the
triangle (we recall that it corresponds to a division of 0 by 0, and that [Ju et al.(2005)Ju, Schaefer, and Warren| handles
the case by setting the value of the weights to 0, as it corresponds to the limit of the weights at these positions). In our
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case, we cannot use the same trick and set the weights to 0 when the points are near the support of the triangles based on a
simple threshold e, since, as the stencil size h tends to 0, all evaluation points are at distance smaller than e, and the finite
differences computation would simply give null derivatives.

Note however, that the fluctuations of the error is of the order of 107!® times the actual norm of the Hessian (which gives
a high signal to noise ratio of 10'8). In any way, the finite difference scheme does not converge to a value different from the
one given by our formula. Note also, that the value of the Hessian is obtained directly from the differentiation of the gradient
that is validated by the finite difference approximation.
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