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Abstract
This paper presents a novel approach for fast and efficient partial shape retrieval on a collection of 3D shapes.
Each shape is represented by a Reeb graph associated with geometrical signatures. Partial similarity between two
shapes is evaluated by computing a variant of their maximum common sub-graph.
By investigating Reeb graph theory, we take advantage of its intrinsic properties at two levels. First, we show that
the segmentation of a shape by a Reeb graph provides charts with disk or annulus topology only. This topology
control enables the computation of concise and efficient sub-part geometrical signatures based on parameteri-
zation techniques. Secondly, we introduce the notion of Reeb pattern on a Reeb graph along with its structural
signature. We show this information discards Reeb graph structural distortion and still depicts the topology of the
related sub-parts. The number of combinations to evaluate in the matching process is then dramatically reduced
by only considering the combinations of topology equivalent Reeb patterns.
The proposed framework is invariant against rigid transformations and robust against non-rigid transformations
and surface noise. It queries the collection in interactive time (from 4 to 30 seconds for the largest queries). It
outperforms the competing methods of the SHREC 2007 contest in term of NDCG vector and provides respectively
a gain of 14,1% and 40,9% on the approaches by Biasotti et al. [BMSF06] and Cornea et al. [CDS∗05].
As an application, we present an intelligent modeling-by-example system which enables a novice user to rapidly
create new 3D shapes by composing shapes of a collection having similar sub-parts.

Categories and Subject Descriptors (according to ACM CCS): H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing I.3.5 [Computer graphics]: Computational Geometry and Object Modeling

1. Introduction

Three dimensional shape retrieval systems based on visual
similarity aim at helping human users browsing large col-
lections of 3D shapes in an interactive and intuitive way. In
this framework, the user specifies a 3D model as an example
query and the system is expected to sort the entries of the
collection by decreasing visual similarity, providing as top
results the most similar entries.

An important literature has been provided for shape re-
trieval based on global similarity, presenting methods en-
abling retrieval of similar objects despite rigid transfor-
mations [CTSO03, FMK∗03] or even non-rigid transfor-
mations (such as shape bending or character articulation)
[HSKK01, GSCO07, JZ07]. We defer the reader to survey
articles [TV04,BKS∗05,IJL∗05] for a broad overview of re-
trieval methods based on global similarity.

However, other applicative contexts, such as modeling-
by-example [FKS∗04] (where new shapes are created by
cutting and pasting existing shape sub-parts) or classifica-
tion [HKDH04], might require to retrieve objects with re-
gard to partial similarity. In such a paradigm, systems are
expected to retrieve objects that have similar sub-parts even
if they visually differ globally.

Unlike shape retrieval based on global similarity, only few
papers have addressed the partial shape retrieval problem,
while it is seen as the next challenging open issue by the
shape retrieval community [CTSO03, FMK∗03]. Moreover,
it is a more general problem than global shape similarity esti-
mation (two globally similar shapes will also be similar par-
tially) and thus it is a research topic of larger impact.

Partial shape retrieval state-of-the-art techniques can be
roughly classified into two categories.
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On the one hand, local descriptors based techniques aim
at characterizing the local properties of a large number of
small features extracted on the shape. Then, partial shape
similarity is estimated by feature point-to-point matching
and matching similarity estimation. Liu et al. [LZQ06] pro-
pose to use a Monte-Carlo sampling on the surface model
and to capture the local aspect of the shape with spin-image
signatures [JH99]. Funkhouser and Shilane [FS06] present
a more sophisticated sampling strategy and then describe
local geometry with several descriptors based on Spherical
Harmonics [FMK∗03] but this method is only experimented
for global shape retrieval. In order to deal with the combi-
natorial explosion due to individual local feature compari-
son, such approaches use complex data-structures to drive
the feature matching process, such as priority queues [FS06]
or feature clusters [LZQ06] inspired by text-document anal-
ysis. Gal et al. [GCO06] present an interesting geometrical
hashing mechanism associated with a local surface descrip-
tion based on curvature analysis. In the context of Euclidean
partial self symmetry detection, Mitra et al. [MGP06] use
a similar approach by sampling the surface and associating
samples with geometrical signatures based on normal cy-
cles [CSM03]. Then, the authors propose a sample pruning
strategy specific to symmetry characterization. However, as
underlined by Biasotti et al. [BMSF06], most of local de-
scriptor methods base their partial similarity estimation on
point-to-point matching only. This is particularly detrimen-
tal in term of re-usability in application contexts such as
modeling-by-example [FKS∗04] where the similar sub-parts
have to be explicitly identified and extracted.

On the other hand, structural based approaches present
the advantage to explicitly identify the surface patches that
have been matched. Moreover, the combinatorial explosion
due to feature comparison can be easily reduced by reason-
ing on the structure of the shape instead of using complex
hashing mechanisms. These methods first segment the shape
and represent it by a graph (or a skeleton [DJ06]) depict-
ing the structural relations between the segments. Then, par-
tial shape similarity is estimated using graph matching tech-
niques. Cornea et al. [CDS∗05] propose to extract the curve-
skeleton of the shape and then employ the Earth Mover’s
Distance [KSDD03] to evaluate the partial similarity of the
skeletons. However, sub-part signature is based on the eu-
clidean distance between the surface and its skeleton which
makes the method quite sensitive to non-rigid transforma-
tions. Biasotti et al. [BMSF06] present an efficient method
based on Reeb graphs and Spherical Harmonics [FMK∗03].
However, even if the Reeb graph construction algorithm is
robust to non-rigid transformations (such as shape bend-
ing or character articulation), sub-parts signatures (spheri-
cal harmonics) are not, which is slightly detrimental to the
overall robustness of the approach.

In this paper, we present a fast and efficient structural ori-
ented approach for partial 3D shape retrieval, based on Reeb
graphs – an expressive topological shape description which

has already shown its utility in several computer graph-
ics applications [BMS00,ZMT05,AHLD07] (see [BGSF08]
for a recent survey). Unlike previous works based on Reeb
graphs [HSKK01, TS05] and which have been specifically
designed for global shape retrieval (using a multi-resolution
strategy), this work presents a framework for partial simi-
larity retrieval (retrieving objects that have similar sub-parts
even if the visually differ globally). Moreover, in comparison
with the technique proposed by Biasotti et al. [BMSF06],
this paper introduces a novel description (which is pose in-
sensitive) and a new partial comparison method. The main
contribution of this work is to take advantage of the intrinsic
properties of Reeb graph theory to improve both the shape
description and comparison processes. First we segment the
shape using a Reeb graph and encode the relations between
resulting patches into a dual Reeb graph. We show this seg-
mentation provides only two types of charts, called Reeb
charts, that have either disk or annulus topology. This topol-
ogy control enables efficient pose insensitive sub-part ge-
ometrical description based on parameterization techniques
[WWJ∗06, TVD07]. Secondly, we introduce the notion of
Reeb pattern on a Reeb graph along with its structural signa-
tures. We show this information discards Reeb graph struc-
tural distortion and avoids the use of error-tolerant graph
matching algorithms [MB98]. Moreover, Reeb pattern struc-
tural signatures concisely encode the related sub-part topol-
ogy and enable to dramatically reduce the number of combi-
nations to evaluate in the matching process by only consider-
ing the combinations of topology equivalent Reeb patterns.

After a brief method overview, we describe the Reeb
graph segmentation process and detail the sub-part geomet-
rical signature computation. Then, we introduce the notion
of Reeb pattern and present the partial similarity estima-
tion algorithm based on Reeb pattern unfolding. Finally,
we show experimental results that demonstrate the perfor-
mance improvement and the robustness of our method. We
also describe an intelligent modeling-by-example system
that demonstrates the applicative interest of our framework.

2. Method overview

Let M be a closed 2-manifold of arbitrary genus embedded
in R3. First, we compute the Reeb graph of M to segment
it into a set of charts Ci of controlled topology, which we
call Reeb charts, which have either disk or annulus topology.
Then, for each chart, we compute its unfolding signature λφi

(as introduced in [TVD07]) by measuring the distortion of
its mapping φi to the canonical planar domain D (either the
unit disk or the unit annulus). Finally, the input manifold is
represented by a dual Reeb graph noted R associated with
the unfolding signatures of the Reeb charts.

To measure the partial similarity between two dual Reeb
graphs R1 and R2, approximations of their maximally sim-
ilar common sub-graphs G∗1 and G∗2 are computed. In partic-
ular, to reduce the number of combinations to consider, we
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Figure 1: Feature points and f functions (first row) and dual Reeb graphs (second row) of several surface models.

use the following strategy. First, the sets P1 and P2 of topol-
ogy equivalent Reeb patterns belonging respectively to R1
and R2 are detected. Then, the set M of all possible map-
pings m between topology equivalent Reeb patterns of P1
and P2 (m : P1 →P2) is computed. In practice, the average
cardinality of M is 20. For each mapping m, an expansion
algorithm simultaneously expands the common sub-graphs
Gm

1 and Gm
2 in R1 and R2.

Each mapping m is scored relatively to the geometrical
similarity S(m) between the two common sub-graphs Gm

1
and Gm

2 . S(m) is computed by comparing the unfolding sig-
natures λφi and λφ j of the pairs of matched Reeb charts Ci

and C j . Let m̂∗ maximize on M the similarity S between its
related sub-graphs Ĝ∗1 and Ĝ∗2 . The similar sub-parts of two
closed 2-manifolds M1 and M2 are identified by Ĝ∗1 and Ĝ∗2 .
Moreover, the partial similarity between M1 and M2 is given
by S(m̂∗). Algorithm 1 summarizes the overall process.

Algorithm 1 Partial shape retrieval algorithm overview.
Compute the query shape’s Reeb graph Rq
for all Ci ∈Rq do

Compute Ci unfolding signature.
end for
Compute Rq structural signatures.
for all Rc in the collection index do

Compute the set M of mappings m between
topology equivalent Reeb patterns of Rq and Rc.

for all m ∈M do
Expand recursively m to patterns’ neighbor charts.
Evaluate S(m).

end for
Return S(m̂∗) as the partial

similarity between Rq and Rc
end for
Sort the collection entries according to their partial

similarity to the query shape.

3. Reeb graph and unfolding signatures

Given an input closed 2-manifold M of arbitrary genus, the
first step of the framework, the shape description step, con-

sists in segmenting M using its Reeb graph [Ree46] and to
compute a geometrical signature for each extracted surface
segment.

3.1. Reeb graph segmentation

Definition 1 (Reeb graph) Let f : M → R be a simple
Morse function defined on a compact manifold M. The Reeb
graph R( f ) is the quotient space on M×R by the equiv-
alence relation (p1, f (p1)) ∼ (p2, f (p2)), which holds if
f (p1) = f (p2) and p1, p2 belong to the same connected
component of f−1( f (p1)).

(a) (b) (c) (d)

Figure 2: Segmentation of a hand surface model into its
Reeb charts.
To deal with invariance to rigid transformations and robust-
ness to non-rigid ones, we compute the Reeb graph of the
input 2-manifold (represented by a triangulation noted T )
using a function based on geodesic distances. In particular,
to introduce some visual semantics in the segmentation, we
automatically extract feature points (vertices located on the
extremity of prominent components, see implementation de-
tails in section 3.3). For each vertex v ∈ T , f (v) = δ(v,v f )
where δ stands for the geodesic distance and v f for the clos-
est feature point from v. Figure 2(a) shows the level lines of
f and the feature points of T (in green). This computation of
the f function has been preferred to the integral geodesic ap-
proximation [HSKK01] or an harmonic function [NGH04]
because it gives better emphasis on local shape features (like
fingers or ears) thanks to the feature points, which is crucial
for partial matching.

Definition 2 (Reeb chart) Let Ψ : M→R( f ) map each point
p of M to its equivalence class in R( f ). Let E = {E0, . . .En}
be the edges (maximally connected unions of equivalence
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classes containing only regular points of f ) of the Reeb
graph R( f ). Ci = Ψ

−1(Ei) is defined as a Reeb chart.

Figure 2(b) shows a dual Reeb graph (where each edge
Ei is collapsed in a colored node and where black arcs rep-
resent adjacency relations between edges). Figure 1 gives
more example of feature points, f functions and dual Reeb
graphs. Figure 2(c) and 2(d) show the segmentation of the
hand model into its Reeb charts. Basically, Reeb charts are
the surface patches that correspond to the nodes of the dual
Reeb graph.

Statement 1 (Reeb chart topology) Reeb charts of a com-
pact closed orientable 2-manifold have either disk or annulus
topology whatever the genus of the manifold is.

This statement can be briefly argued as follows. By defi-
nition, an edge Ei has two extremities, whose pre-images by
Ψ are circles which form the two boundary components of
the closure of the chart Ci. Hence, the closure of the Reeb
charts has two boundary components. Morever, Ci has genus
zero. Thus Reeb charts have the topology of an open annulus
(by definition, critical points and particularly saddle points
equivalence classes are not included in Reeb charts).

Disk-like Reeb charts constitute a specific case. We call a
disk-like Reeb chart a Reeb chart which is adjacent to only
one local extremum of f . As the related boundary compo-
nent collapses to a point (the extremum), that kind of chart
is given the topology of an open disk.

In figure 2(d), disk-like Reeb charts have been colored in
blue and annulus-like ones in red. Notice that this decompo-
sition brings a certain visual semantic: each of the fingers of
the hand model forms a distinct chart.

3.2. Reeb chart unfolding signatures

To achieve efficient pose-insensitive geometrical signature
computation for each Reeb chart Ci, we propose to character-
ize Ci by parameterization techniques [WWJ∗06, TVD07],
especially by its mapping φi to the canonical planar domain
D. In particular, we propose to compute Ci unfolding sig-
nature [TVD07], a concise vector that describes the evolu-
tion of the area distortion introduced by a planar mapping,
as summarized below. Thanks to the Reeb graph properties,
only two cases had to be considered: disk-like charts and
annulus-like charts (cf. statement 1).

Given a disk-like chart Ci, let O be the local extremum
of f it contains and B its boundary. We let φi map O to the
center of the unit planar disk, B to its boundary and f level
lines to concentric circles, as shown in figure 3, where the
thumb of the hand of figure 2 has been mapped to the planar
domain D.

Let ρ(p) ∈ ]0,1[ be the normalized absolute difference of
f values between O and a point p ∈Ci, as shown in figure 3.
Consequently to the Reeb chart definition, the sub-level set

(a) (b)

Figure 3: Disk-like chart unfolding signature computation.

of ρ ({(p1, p2 . . . pn)|ρ(p1, p2, . . . pn) < ρ0 }) have also disk
topology, as illustrated by the white sub-level set in figure 3.
As ρ increases, the shape of the ρ sub-level sets varies. Thus
it induces an evolution in the distortion introduced by their
mapping to D. Consequently, to capture the evolution of the
sub-level set shape variation, the unfolding signature λφi of
φi is defined as follows:

λφi(ρ) =
ACi(ρ)
AD(ρ)

=
ACi(ρ)

πρ2 (1)

where ACi(ρ) stands for the area of the sub-level set for pa-
rameter ρ on the original surface (Ci) and AD(ρ) stands for
the area of the sub-level set on D. ACi(ρ) is computed by
summing the areas of the related triangles of T (after having
normalized edge length by f , similarly to ρ).

Roughly, λφi(ρ) depicts the stretch one has to apply on the
chart to map it to a disk as ρ increases.

As shown in [TVD07], as f is based on geodesic dis-
tances, the parameterization (and thus its signatures) is in-
variant to rigid transformations and robust to non-rigid trans-
formations. Moreover, it is also robust to surface noise.

(a) (b)

Figure 4: Annulus-like chart unfolding signature.

An analog reasoning can be applied for annulus-like
charts. Let B1 be the boundary of shortest perimeter of an
annulus-like chart C j and B2 the other one. In this case, we
let φ j map B1 to the inner boundary of the unit planar an-
nulus and B2 to its outer boundary, as shown in figure 4. By
defining the ρ parameter similarly to the previous case, the
signature λφ j of φ j is computed as follows (1 is the inner
radius of the unit annulus):

λφ j (ρ) =
AC j (ρ)
AD(ρ)

=
AC j (ρ)

π(ρ+1)2−π
(2)
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3.3. Implementation details

For feature point extraction, among existing techniques
[KLT05, LZ07, TVD08], we used the approach described
in [TVD08] as at least two antipodal feature points are al-
ways guaranteed to be extracted (so f can always be com-
puted). This technique proposes to identify the extremities
of prominent components by intersecting the sets of extrema
of two scalar functions based on the geodesic distances to
two automatically extracted antipodal vertices [TVD08]. It
runs in O(nlog(n)) steps with n being the number of vertices
in the surface mesh and the extraction is robust to noise and
invariant to isometric transformations.

Regarding the Reeb graph computation, the geodesic dis-
tance to feature points function does not necessarily fulfill all
the requirements of a simple Morse function: (i) smoothness,
(ii) distinctly valued critical points and (iii) non-degenerate
critical points. Thus, we propose a strategy based on f per-
turbation to guarantee Reeb graph intrinsic properties (espe-
cially about the degree of its nodes). First, (i) f is not dif-
ferentiable in the configurations of the surface where points
are geodesic-equidistant from several feature points. In the
discrete setting, this phenomenon leads to the apparition of
additional maxima and saddles in these configurations. To
cancel these specific critical points, we propose a strategy
based on global perturbation, used in [TVD08] on a similar
function in the context of skeleton extraction. Starting from
the feature points ( f minima in this paper), the algorithm
iteratively visits the surface mesh by propagation, using a
variant of Dijkstra’s algorithm (which uses f as weight).
Let v be the vertex visited at a given step of such a sweep,
the set of vertices candidate for visit (plus the edges link-
ing them) form an upper-value approximation of f−1( f (v))
(level line approximation). Then topological variations are
encoded in the graph at iterations where connected com-
ponents of the level line approximation (contour approxi-
mations) split or merge (see [TVD08] for further details).
As the algorithm visits one vertex per iteration, this process
is equivalent to considering for each vertex its visit itera-
tion number as f value. This perturbation simulates value
uniqueness (ii). Moreover, as additional critical points lo-
cated in areas where f is non-differentiable are visited itera-
tively, they are attributed distinctly increasing values, cancel-
ing pairs of extra maxima and saddles (i). Additionally, if a
contour approximation splits in k+1 sets from an iteration to
another with k≥ 2 (or if k+1 contour approximations merge
into one), a multiple k-saddle unfolding strategy [EHZ01]
is used to simulate k simple saddles. This technique trans-
forms degenerate critical points into non-degenerate ones
(iii) [EHZ01, CMEH∗03].

At this stage of the framework, the input closed 2-
manifold M is concisely represented by a dual Reeb graph
R, whose nodes are accompanied with the unfolding signa-
tures of corresponding Reeb charts. In particular, each un-
folding signature is stored as a vector of real values (using

a pre-defined number of samples, 64 in all of our experi-
ments).

4. Reeb pattern based matching algorithm

The next step of the framework consists in shape partial sim-
ilarity estimation. Given two input 2-manifolds M1 and M2,
the goal is to identify their similar sub-parts and to evaluate
their geometrical similarity.

4.1. Problem statement

Given two dual Reeb graphs R1 and R2, the goal would be
to find an optimal injective mapping m∗ between a sub-graph
G∗1 ∈R1 and a sub-graph G∗2 ∈R2 which maximizes a simi-
larity function S(m∗), computed relatively to the geometrical
signatures of the nodes matched by m∗.

A brute-force approach to this problem consists in com-
puting the set M of all the possible injective mappings
m : R1 →R2, then identifying through an expansion pro-
cess the common sub-graphs Gm

1 ∈ R1 and Gm
2 ∈ R2 (such

that m : Gm
1 → Gm

2 is an isomorphism) and finally evaluat-
ing their geometrical similarity S(m). The solution of the
problem would be the mapping m∗ ∈M that would max-
imize S. Let n and k be respectively the number of nodes
of the largest and the smallest of the two dual Reeb graphs
to compare. With such an approach, |M| = n!

(n−k)! , which
results in an exponential time complexity evaluation pro-
cess. Moreover, in practice, as underlined by Messmer and
Bunke [MB98], graphs representing real world objects may
be affected by noise or distortion, motivating the use of error-
tolerant matching algorithm, whose complexity is generally
even greater than exact algorithms [MB98].

In the following paragraphs, we describe Reeb graph
structural distortion and propose a structural signature for
Reeb patterns insensitive to such a distortion (avoiding the
need for error-tolerant matching algorithm). Finally, for par-
tial similarity estimation, we dramatically reduce the search
space of the problem by considering the set of all the pos-
sible injective mappings between topology equivalent Reeb
patterns only.

4.2. Reeb pattern and structural distortion

Definition 3 (Reeb pattern) Let M be a compact closed
2-manifold embedded in R3, R( f ) its Reeb graph and Ci
an annulus-like Reeb chart. Let B+ be the boundary com-
ponent of Ci with highest f value, noted fB+ . Let M− be
the sub-level set of M associated to the fB+ value (M− =
{p ∈M| f (p) < fB+}). The Reeb pattern Pi associated to the
annulus-like Reeb chart Ci is the connected component of
M− having B+ as only boundary component.

Figure 5 shows an Armadillo with its dual Reeb graph and
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Figure 5: Structural distortion on two visually similar and
topology equivalent Reeb patterns.

zooms in two Reeb patterns P1 and P2 and their related sub-
graphs G1 and G2. Moreover, the annulus-like charts asso-
ciated to P1 and P2 have been marked with a red circle.
Roughly speaking, a Reeb pattern Pi is a surface sub-part
which includes nearby protrusions (this is a set of annulus
and disk-like charts, delimited by Ci boundary). Notice Reeb
patterns are not necessarily defined for each annulus-like
Reeb chart (they are not defined for pairs of charts forming
handles).

Dual Reeb graphs can suffer from noise and distortion.
From our experiences, feature point extraction is very stable
on similar objects. This means very few noise due to inex-
act feature point extraction will appear. However, dual Reeb
graphs still suffer from distortion.

Morse theory [Mil63] states that any smooth function
on a manifold can be transformed into a Morse function
by a slight perturbation, which transforms degenerate crit-
ical points into non-degenerate ones. This result depicts the
fact that small perturbations on the function can drastically
change the properties of the critical points. In particular, in
our case, a slight perturbation on the surface (and thus on
the function) can change the sequence of bifurcations and
junctions in the corresponding dual Reeb graph. As a con-
sequence, in figure 5, the sub-graph G1 first bifurcates in
the A-labelled region while the sub-graph G2 first bifurcates
in the B-labelled region. Consequently, no isomorphism ex-
ists between G1 and G2 while the two related Reeb patterns
(the hands of the Armadillo) are visually similar and topol-
ogy equivalent. We refer to this phenomenon as Reeb graph
structural distortion.

To overcome this issue, in order to compare topology
equivalent Reeb patterns despite structural distortion, we in-
troduce the notion of structural signature of a Reeb pattern.

Definition 4 (Reeb pattern structural signature) Let M
be a compact closed 2-manifold embedded in R3 and Pi a
Reeb pattern associated to an annulus-like Reeb chart Ci.
Let nD(Pi) and nA(Pi) be respectively the number of disk-
like and annulus-like Reeb charts included in Pi. The couple
(nD(Pi),nA(Pi)) is the structural signature of Pi.

Statement 2 (Structural signature topological properties)
The structural signature of Pi describes Pi topology since
nD(Pi) and nA(Pi) are linked by the following relation:

nD(Pi) = nA(Pi)+1−3gPi (3)

with gPi the genus of the Reeb pattern.

A proof of equation 3 is given in appendix A. By defini-
tion, all Reeb patterns are 2-manifolds with one boundary. In
term of topology description, only their genus differs. Thus
their topology is fully described through their structural sig-
nature. Moreover, this signature does not encode the way the
bifurcations and junctions are sequenced in the Reeb pattern.
Thus it does not depict structural distortion.

Figure 6: Structural signatures of a genus-0 and a genus-1
Reeb pattern.

Figure 6 gives two examples of structural signatures of a
genus-0 and a genus-1 Reeb pattern. In the rest of the ap-
proach, structural signatures help us both overcoming struc-
tural distortion and reducing the search space of the problem.

4.3. Maximally similar common sub-graph
approximation

In the following paragraphs, we introduce an efficient ap-
proximation of the brute-force approach that does not con-
sider all the node-to-node combinations but the topology
equivalent Reeb pattern to topology equivalent Reeb pattern
combinations only.

4.3.1. Reeb pattern combination enumeration

First, the structural signature of each Reeb pattern Pi of each
of the two dual Reeb graph R1 and R2 is computed.

Then, for each identified Reeb pattern Pi, we compute the
set of topology equivalent Reeb patterns (whose structural
signatures are identical) in the other graph. LetP1 andP2 be
respectively the sets of Reeb patterns ofR1 andR2 that have
a homologue in the other graph (whose structural signatures
are identical).

Next, we compute the set M of all the possible injective
applications m :P1 →P2 that map a Reeb pattern P1 ∈P1 to
a homologue Reeb pattern P2 ∈ P2. In our experiments, the
average cardinality of M is 20 (which has no comparison
with the n!

(n−k)! combinations of the brute-force approach).

submitted to COMPUTER GRAPHICS Forum (7/2008).



Tierny et al. / Partial 3D shape retrieval by Reeb pattern unfolding 7

Figure 7: Expansion example: for a given combination of
topology equivalent Reeb patterns ((P1,P2) and (P3,P4)),
the expansion algorithm tries to expand as much as possi-
ble the common sub-graphs (in bold in the second row).

4.3.2. Expansion of common sub-graphs

Next, the common sub-graphs Gm
1 ∈ R1 and Gm

2 ∈ R2 are
built for each m thanks to an expansion algorithm that si-
multaneously visits R1 and R2, starting by Reeb pattern
associations. As illustrated in the example of figure 7, this
algorithm expands the initial mapping m by recursively vis-
iting the nodes adjacent to associated Reeb patterns.

Figure 8: Expansion process from two topolgy equivalent
Reeb patterns P1 and P2. Steps 1, 2 and 3 are depicted by
blue arrows.

Step 1 Considering R1 and R2 as directed acyclic graphs
(the direction goes towards decreasing f values), the algo-
rithm first visits the parent nodes Ci and C j of P1 and P2, as
shown in figure 8 (step 1). If the degree or the type of Ci and
C j differs, the expansion stops at this point and restarts from
another unvisited pair of topology equivalent Reeb patterns.
Otherwise, the expansion continues. In the case of orientable
2-manifolds, the degree of an equivalence class of a saddle
point in the Reeb graph always equals 3 [Ree46]. As a con-
sequence, two more steps, at most, have to be considered
(labelled 2 and 3 in figure 8).

Step 2 The step 2 recursively repeats steps 1, 2 and 3 in
this order. This means the expansion continues the same way
as far as visited nodes have the same degree. Moreover, it
stops when nodes corresponding to Reeb patterns explicitly
matched by m are reached.

Step 3 In step 3, the expansion continues with the same
stopping condition. However, let CA and CB be two nodes
that have been matched in step 3. If their degree equals 3,
a decision has to be taken as for the matching of their chil-
dren C1,C2 and C3,C4 (see figure 8). Children whose Reeb
patterns are explicitly matched by m are by definition as-
sociated. Remaining nodes are matched according to their
degree and their structural signature. At this point, if no de-
cision can be taken according to this criterion, the expansion
stops and restarts from another unvisited pair of homologue
Reeb patterns.

The output of this algorithm are two common sub-graphs
Gm

1 and Gm
2 , along with their node and Reeb pattern matches.

4.3.3. Intra-Reeb pattern node-to-node matching

The previous algorithm outputs node and Reeb pattern asso-
ciations. In order to have a full node-to-node correspondence
between the two sub-graphs to compare, we have to find a
node-to-node mapping for each pair of topology equivalent
Reeb patterns matched by m (like P1 and P2 in figure 8).
Due to possible structural distortion, there might be no iso-
morphism between the sub-graphs G1 and G2 of P1 and P2.

Consequently, intra-Reeb pattern node matching is driven
by geometrical similarity only running a bipartite matching
algorithm, which tries to match the most similar nodes while
maximizing the sum of similarities on the patterns. In prac-
tice, we run a polynomial approximation of this algorithm as
shown in figure 9. Let CA and CB be respectively the set of
disk charts of P1 and P2. For each chart CAi ∈ CA, the charts
of CB are sorted by decreasing values of the geometrical sim-
ilarity function s ∈ [0,1], as shown in the example of figure
9:

s(CAi ,CB j ) = 1−LN1(CAi ,CB j ) (4)

where LN1 is the normalized L1 distance between the un-
folding signatures of CAi and CB j . Then, the pair of most
similar charts are matched. If conflicts occur (see CB1 in the
example of figure 9), only the best matches ((CA1 ,CB1) in
the example) are kept unchanged until no more conflict per-
sists. By definition of the Reeb pattern structural signature
|CA| = |CB|, thus this algorithm is guaranteed to converge
to a solution. Finally, the same process is achieved for the
annulus-like charts of P1 and P2. At this stage of the algo-
rithm, m is a full node-to-node correspondence between Gm

1
and Gm

2 .

4.3.4. Similarity estimation

In this step of the comparison, each mapping m is scored
relatively to the geometrical similarity S of associated com-
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8 Tierny et al. / Partial 3D shape retrieval by Reeb pattern unfolding

Figure 9: Intra-Reeb pattern node-to-node matching (bipar-
tite matching approximation).

Figure 10: Reeb chart (bright colors) and pattern (dark
colors) matching between a boy and a centaur. Unmatched
charts are black. Even though the hands do not have the
same number of fingers (some are stuck together on the left
model and count for one), they still have been matched.

mon sub-graphs Gm
1 and Gm

2 . At this point, several similarity
functions can be defined. In our experiments, we use the fol-
lowing function:

S(m) =

∑
∀Ci∈Gm

1

(1−LN1(Ci,m(Ci)))
α

|Rq|
(5)

In equation 5, LN1(Ci,m(Ci)) stands for the normalized L1
distance between the unfolding signatures of Ci and m(Ci).
α stands for a corrective parameter whose aim is to amplify
the geometrical similarity contribution (after training, α is
set to 4). Finally |Rq| stands for the number of nodes of the
dual Reeb graph that represents the query model presented
to the system. Notice this similarity measure does not re-
spect symmetry or triangular inequality (an object can share
similar parts with two other objects that are not similar).

Finally, the mapping m̂∗ that maximizes S is the approx-
imation of the optimal solution m∗. Moreover, Ĝ∗1 and Ĝ∗2
are the approximations of the most similar sub-parts of two
2-manifolds M1 and M2, whose partial similarity is given
by S(m̂∗). Figure 10 shows an example of the approximated
optimal mapping m̂∗ between two sub-graphs Ĝ∗1 and Ĝ∗2
of two surface models, along with the node-to-node and
pattern-to-pattern matching.

Figure 11: SHREC 2007 data-set snapshot (one class per
row: ants, armadillos, bearings, birds, bustes, chairs, cups,
fishes, four-legs, glasses, hands, humans, mechanics, octo-
puses, planes, pliers, springs, tables, teddies and vases).

Figure 12: SHREC 2007 query-set snapshot.

5. Experiments and results

To assess the efficiency of the framework, we evaluate its
performance on the SHREC 2007 partial retrieval bench-
mark [MPB07], and make some comparisons with the meth-
ods competing to this contest.
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(a) Query (b) 1. S = 0.284 (c) 2. S = 0.276 (d) 3. S = 0.247 (e) 4. S = 0.239 (f) 5. S = 0.227 (g) 6. S = 0.226 (h) 7. S = 0.225

Figure 13: A query from the SHREC 2007 query-set (a centaur) and the top-7 results retrieved by the system.

(a) Query (b) 1. S = 0.265 (c) 2. S = 0.235 (d) 3. S = 0.231 (e) 4. S = 0.211 (f) 5. S = 0.198 (g) 6. S = 0.178 (h) 7. S = 0.159

Figure 14: A genus-1 query from the SHREC 2007 query-set and the top-7 results retrieved by the system.

5.1. Partial retrieval benchmark description

This benchmark is composed of a data-set of 400 manifold
models (grouped in 20 classes, see figure 11) and of a query-
set of 30 manifold models (see figure 12). The data-set ex-
hibits diverse variations, from pose change, to shape vari-
ability within a same class or topology variation (notice 4 of
the 20 classes contain non zero genus surfaces). Each query
shares visually similar sub-parts with at least two classes of
the data-set. Figures 13, 14 and 15 show three examples of
typical queries and the models of the data-set retrieved by
our system. Moreover, for a given query, the ground-truth
divides the data-set into Highly Relevant, Marginally Rele-
vant and Non Relevant class groups. This granularity enables
to precisely evaluate the relevance of the results returned by
the system. In particular, each relevance group is associated
to a specific score, used in the computation of the Normal-
ized Discounted Cumulated Gain (NDCG) vector. Roughly
speaking, the higher is the NDCG[i] value, the more relevant
are the top-i results. Such a performance measure provides
a relevance overview over the whole the data-set. Moreover,
it can take into account several classes for scoring a query,
which is important for partial similarity since a query can be
partially similar to several classes of objects. Furthermore,
it is the only performance measurement taken into account
in the contest (for more details, we defer the reader to the
contest proceedings [MPB07]).

5.2. Experimental setup

The 400 models of the data-set are first indexed off-line.
During the off-line process, the dual Reeb graph and the re-
lated unfolding signatures (using 64 samples) are computed
for each model and stored into the index file of the data-set.

During the on-line process, the dual Reeb graph and the
unfolding signatures of the query are first extracted. Then, its
dual Reeb graph is compared with each graph of the index as
described previously. Finally, the entries of the data-set are

Figure 16: Average Normalized Discounted Cumulated
Gain (NDCG) vectors for Reeb pattern unfolding (RPU), Ex-
tended Reeb Graphs (ERG) and curve-skeleton based many-
to-many matching (CORNEA) on the SHREC 2007 data-set.

sorted by decreasing values of partial similarity. Depending
on the number of vertices in the query surface mesh and the
size of the dual Reeb graph, the full processing time of a
query varies from 4 to 30 seconds on a 3GHz P4 PC.

5.3. Framework performance evaluation

First, from a qualitative point of view, figures 13, 14 and
15 give a good overview of the efficiency of the framework.
For example, in figure 13, the query is a centaur (half-horse,
half-human) and thus most of the top-results are humanoid
models (first horses are retrieved at rank 15), even if they are
not globally similar to the query. Figure 14 demonstrates the
method’s ability to handle non zero genus surfaces (the case
of the two outliers, rank 6 and 7, is discussed in the limitation
dedicated section 5.5).

From a more quantitative point of view, in the first ex-
periment, we compare the average NDCG vector of our ap-
proach with those of the methods competing the contest
[CDS∗05, BMSF06] (as reported in the contest proceedings

submitted to COMPUTER GRAPHICS Forum (7/2008).
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(a) Query (b) 1. S = 0.296 (c) 2. S = 0.257 (d) 3. S = 0.256 (e) 4. S = 0.235 (f) 5. S = 0.199 (g) 6. S = 0.197 (h) 7. S = 0.196

Figure 15: Another query from the SHREC 2007 query-set (an Armadillo composed with a plane) and the top-7 results retrieved
by the system. Notice that Armadillos have been retrieved despite their different poses.

Figure 17: Contribution of the chart unfolding signatures to
the performances.

[MPB07]). Such a vector is the average of the 30 NDCG vec-
tors corresponding to the 30 models of the query-set. Figure
16 shows the curves corresponding to these vectors. As the
Reeb pattern unfolding (RPU) curve is higher than the oth-
ers, it is obvious that it outperforms related methods. More-
over, to quantify its improvement, we introduce the NDCG
vector gain G, which is the ratio of the area between two
curves and the area below the lowest one:

G(A,B) =

400

∑
i=1

(NDCG[i]A−NDCG[i]B)

400

∑
i=1

NDCG[i]B

(6)

With such a measure, the gain on the methods by Biasotti
et al. [BMSF06] and Cornea et al. [CDS∗05] is respectively
of 14,1% and 40,9%. In the second experiment, we evalu-
ate the impact of the choice of the similarity function S (see
section 4.3.4) on the retrieval performances. In particular,
we consider the function S1 that returns the size of the com-
mon sub-graphs (the maximally similar common sub-graphs
become then the maximum common sub-graphs). We also
consider the function S2 where the unfolding signatures have
been replaced by the geometrical attributes used by Hilaga et
al. [HSKK01]. The related curves are reported in figure 17.
This figure shows that performances comparable to the other
methods are obtained with S2. Moreover, it clearly demon-
strates the gain provided by unfolding signatures.

(a) Original model (b) Noise ±0.5% (c) Noise ±1%

Figure 18: Surface noise on a SHREC 2007 query.

Figure 19: Robustness evaluation of RPU with a noisy ver-
sion of the SHREC 2007 query-set. Even with a surface noise
of±0.5%, RPU still outperforms state-of-the-art techniques
scores on clean data.

5.4. Robustness evaluation

As the dual Reeb graph construction and the unfolding sig-
nature computation are based on normalized geodesic dis-
tance evaluation, the approach is guaranteed to be invariant
against rigid-transformations. Moreover, figure 15 demon-
strates its robustness against non-rigid transformations, since
Armadillos in different poses have been retrieved as top re-
sults. In the third experiment, we investigate the framework
robustness against surface noise. In particular, for each ele-
ment of the query-set, we added a surface noise whose am-
plitude is bounded by respectively ±0.5% and ±1% of the
lengths of the bounding box of the model, as shown in fig-
ure 18. The NDCG vectors with such corrupted query-sets
have been reported in figure 19. These curves demonstrate
the stability of the algorithm despite the noise. Moreover,
even with a surface noise of ±0.5%, it stills outperforms
ERG [BMSF06] scores on clean data.
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(a) Query (b) New model

(c) 1. s=0.22 (d) 2. s=0.20 (e) 3. s=0.19 (f) 4. s=0.18

Figure 20: Modeling a cow-horse by example: the user se-
lects on the query, then on the retrieved results (second row),
the Reeb patterns to be exchanged.

5.5. Discussion and limitations

As other structural based approaches, the surface decompo-
sition step of the framework introduces a bias in the compar-
ison process. To guarantee stability and performance, this
decomposition has to be stable within a same class of ob-
jects and moreover coherent with the data-set ground-truth.
The bias introduced in the presented technique is based on
feature point extraction (which drives the surface segmenta-
tion). Hence, this stage is a critical part of the framework and
impacts its performances. In practice, with the SHREC data-
set, feature extraction turns out to be homogeneous within
most classes. As a counter-example, the four legs class is
composed of models representing distinct types of animals,
having different protrusions (with or without tail, horns, etc.)
and thus leads to slightly distinct decompositions. In the fu-
ture, we would like to investigate other decomposition strate-
gies that would overcome this issue but still take into account
local shape features.

Moreover, as the decomposition and matching processes
are topology based, the overall framework is quite sensible
to topology variations within a same class of objects. For
example, most of humanoids are modeled with genus zero
surfaces but if a humanoid’s feet are stuck to each other the
related surface will have genus one and consequently the
legs will mainly match with objects having handles. Same
remarks go to the example of figure 14, where the topol-
ogy influences the results: the genus-1 part of the query is
matched with the back of the chair (rank 6) while its left
bent appendix is matched with one of the chair’s (rank 6)
and table’s (rank 7) legs (the unfolding signatures are bend-
ing insensitive). In the future, the combination of local and
structural approaches is worth being studied to overcome
this issue.

(a) Query (b) New model

(c) 1. s=0.61 (d) 2. s=0.50 (e) 3. s=0.42 (f) 4. s=0.40

Figure 21: Modeling a new woman model by example, com-
posing both synthetic and scanned models.

6. Application to modeling by example

To demonstrate the applicative interest of the framework,
we designed an intelligent modeling-by-example system
[FKS∗04]. Figures 20 and 21 show typical use examples.
First, the user queries the data-set through our partial shape
retrieval system. Then, he/she selects on the query the Reeb
patterns (or Reeb pattern sub-parts) he/she wants to remove
(in red, green and blue in fig. 20(a)). Next, the system auto-
matically highlights the parts of the retrieved results candi-
dates for swapping, based on our graph matching algorithm.
The user then selects the retrieved results and cut the desired
parts (highlighted or not, fig. 20(c), 20(d) and 20(f)). After
scaling, rotating and translating the parts according to his/her
needs, the cut sub-parts are pasted back onto the query model
(fig. 20(b)). In our experiments, boundaries are simply re-
meshed but more visually appealing methods can be em-
ployed for gluing parts [SBSCO06]. Thanks to the partial
shape retrieval and the part swapping suggestions, a novice
user can intuitively and rapidly create new 3D shapes with
high geometric details based on the example parts of interest
retrieved by our system.

7. Conclusion

In this paper, we presented a novel approach for fast and ef-
ficient partial 3D shape retrieval. The main contribution of
this work was to take advantage of Reeb graph theory prop-
erties to improve both the shape description and compari-
son processes. Extensive experiments demonstrated the im-
provement of each of these steps, resulting in an overall gain
of respectively 14,1% and 40,9% on the methods by Bia-
sotti et al. [BMSF06] and Cornea et al. [CDS∗05]. More-
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over, the robustness to rigid and non-rigid transformations
and surface noise has been shown. Finally, queries are pro-
cessed in interactive time (from 4 to 30 seconds).

However, shape topological description might be too dis-
criminant in some particular cases. For example, humanoids
can be modelled with closed fists or open hands, resulting
in different Reeb graphs and thus penalized partial similar-
ity. This is a major drawback of topology based approaches.
In the future, the combination of local and structural ap-
proaches is worth being studied.

Moreover, input surface models are required to be man-
ifold. In the future, we would like to adapt the framework
to more general mesh models. Reeb graph construction al-
gorithms for non-manifold surfaces can be a starting point
[PSBM07].

Finally, as dynamic meshes (3D plus time) are becom-
ing more and more popular, in the future, we would like
to investigate the use of Reeb graphs of higher dimension
manifolds [EHMP04] for the partial retrieval of 3D dynamic
shapes. We believe this research topic is one of the next chal-
lenges of the shape retrieval community and could result in
nice user applications like animation-by-example systems.
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Appendix A: nD(P) = nA(P)+1−3gP

Proof Let f be a simple Morse function defined on a compact closed and orientable 2-
manifold M and R( f ) its Reeb graph.
Let P be a Reeb pattern defined relatively to R( f ). By definition, P is a compact 2-manifold
with one boundary component.
Let P′ be the compact and orientable 2-manifold without boundary obtained by the closure
of the boundary of P (where the unique boundary component of P is glued by contraction
to a point, as shown in figures 22 and 23). Let f ′ be a simple Morse function defined on
P′ such that it has the same set of critical points and critical values on P′ than f on P,
plus one maximum (due to the closure of the boundary component of P). f ′ has distinctly
valued critical points and all its critical points are non-degenerate. f ′ is indeed a simple
Morse function. For example, in figures 22 and 23, f and f ′ are the height functions. Let
R( f ′) be the Reeb graph of f ′ (depicted by black arrows on figures 22 and 23, right).
On the first hand, the Euler characteristic χ(P′) of P′ is given by the generalized Euler
relation [FK97] (where gP′ is the genus of P′):

χ(P′) = 2− 2gP′ (7)

On the other hand, the Euler characteristic χ(P′) of P′ can also be expressed by the Morse-
Euler formula [FK97] since P′ is a closed manifold (where k = 2 is the dimension of the
manifold):

χ(P′) =
k

∑
i=0

(−1)iµi( f ′) = µ0( f ′)− µ1( f ′) + µ2( f ′) (8)

In equation 8, µi( f ′) stands for the ith Morse number of f ′ , which is equal to the number
of f ′ critical points of index i. In particular, µ0( f ′), µ1( f ′) and µ2( f ′) are respectively
the number of f ′ local minima, saddles and maxima. In figures 22 and 23, each critical
point is marked with a number of concentric circles equal to its index i.

Disk-like Reeb chart enumeration
Let nD(P′) be the number of disk-like Reeb charts of P′ . By definition, each disk-like
Reeb chart of P′ is exactly adjacent to one local extremum of f ′ . Moreover, the degree
in R( f ′) of equivalence classes of minima and maxima equals one [Ree46] (see figure 22,
right). Then, a local extremum of f ′ can only be adjacent to one disk-like Reeb chart of
P′ . Thus:

nD(P′) = µ0( f ′) + µ2( f ′) (9)

Figure 22: Enumeration of the disk-like Reeb charts of a
Reeb pattern. Left: Original Reeb pattern P. Right: Reeb
pattern P′ after the closure of the unique boundary compo-
nent of P. Disk-like Reeb charts are in blue.

Moreover, by definition, f ′ has exactly the same set of critical points and critical values
on P′ than f on P, plus one maximum due to the closure of the boundary component of
P (see figure 22). Consequently, P and P′ have the same Reeb chart decomposition at the
exception of the chart adjacent to the additional maximum of f ′ , which is transformed
from an annulus-like Reeb chart (in P, figure 22, left) to a disk-like Reeb chart (in P′ ,
figure 22, right) by the closure of the unique boundary component of P. Hence:

nD(P) = nD(P′)− 1 = µ0( f ′) + µ2( f ′)− 1 (10)

Annulus-like Reeb chart enumeration

Figure 23: Enumeration of the annulus-like Reeb charts of
a Reeb pattern. Left: Original Reeb pattern P. Right: Reeb
pattern P′ after the closure of the unique boundary compo-
nent of P. Annulus-like Reeb charts are in red.

Let nA(P′) be the number of annulus-like Reeb charts of P′ . R( f ′) is a finite and connected
one-dimensional simplicial complex [Ree46]. Consequently, it can be considered as a pla-
nar graph, whose vertices are the equivalence classes corresponding to critical points of f ′

and whose edges correspond to the Reeb charts of P′ . Then, the Euler relation for planar
graphs holds:

χ(R( f ′)) = VR( f ′)−ER( f ′) + FR( f ′) = 2 (11)

where VR( f ′) is the number of critical points of f ′:

VR( f ′) = µ0( f ′) + µ1( f ′) + µ2( f ′) (12)

where ER( f ′) is the number of Reeb charts of P′:

ER( f ′) = nD(P′) + nA(P′) (13)

and where FR( f ′) is the number of faces of the planar graph (with LR( f ′) the number of

loops in R( f ′)):

FR( f ′) = LR( f ′) + 1 (14)

Moreover, R( f ′) has gP′ loops [CMEH∗03] (with gP′ the genus of P′). Then, equations
11, 12, 13 and 14 become:

χ(R( f ′)) = 2 = µ0( f ′) + µ1( f ′) + µ2( f ′)− (nD(P′) + nA(P′)) + gP′ + 1 (15)
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Thanks, to equation 9, we have:

2 = µ1( f ′)− nA(P′) + gP′ + 1

nA(P′) = µ1( f ′) + gP′ − 1 (16)

Moreover, by definition, f ′ has exactly the same set of critical points and critical values on
P′ than f on P, plus one maximum due to the closure of the unique boundary component
of P (see figure 23). Consequently, P and P′ have the same Reeb chart decomposition at
the exception of the chart adjacent to the additional maximum of f ′ , which is transformed
from an annulus-like Reeb chart (in P, figure 23, left) to a disk-like Reeb chart (in P′ ,
figure 23, right) by the closure of the unique boundary component of P. Hence:

nA(P) = nA(P′) + 1

nA(P) = µ1( f ′) + gP′ (17)

Relation between nD(P) and nA(P)
Consequently to equation 10 and 17, equation 8 becomes:

χ(P′) = µ0( f ′)− µ1( f ′) + µ2( f ′)

χ(P′) = nD(P) + 1− (nA(P)− gP′ ) (18)

Therefore, thanks to the equation 7, we have the following relations:

nD(P) + 1− nA(P) + gP′ = 2− 2gP′

nD(P) = nA(P) + 1− 3gP′ (19)

Moreover, by definition, the boundary of a Reeb pattern is required to be composed of a
single connected component. Then, the boundary of a Reeb pattern cannot lie on a topo-
logical handle. Consequently, the closure of the unique boundary component of P cannot
modify its genus gP . Then:

gP = gP′ (20)

Thanks to the equation 20, we have the final result:

nD(P) = nA(P) + 1− 3gP (21)

References
[AHLD07] AUJAY G., HÉTROY F., LAZARUS F., DEPRAZ C.: Harmonic skeletons for

realistic character animation. In Symposium on Computer Animation (2007), pp. 151–
160.

[BGSF08] BIASOTTI S., GIORGI D., SPAGNUOLO M., FALCIDIENO B.: Reeb graphs
for shape analysis and applications. Theoretical Computer Science 392 (2008), 5–22.

[BKS∗05] BUSTOS B., KEIM D. A., SAUPE D., SCHRECK T., VRANIC D. V.:
Feature-based similarity search in 3D object databases. ACM Computing Surveys 37
(2005), 345–387.

[BMS00] BIASOTTI S., MORTARA M., SPAGNUOLO M.: Surface compression and re-
construction using Reeb graphs and shape analysis. In Spring Conference on Computer
Graphics (2000), pp. 175–184.

[BMSF06] BIASOTTI S., MARINI S., SPAGNUOLO M., FALCIDIENO B.: Sub-part cor-
respondence by structural descriptors of 3D shapes. Computer-Aided Design Journal
38 (2006), 1002–1019.

[CDS∗05] CORNEA N. D., DEMIRCI M. F., SILVER D., SHOKOUFANDEH A., DICK-
INSON S., KANTOR P. B.: 3D object retrieval using many-to-many matching of curve
skeletons. In IEEE Shape Modeling International (2005), pp. 366–371.

[CMEH∗03] COLE-MCLAUGHLIN K., EDELSBRUNNER H., HARER J., NATARAJAN
V., PASCUCCI V.: Loops in Reeb graphs of 2-manifolds. In Symposium on Computa-
tional Geometry (2003), pp. 344–350.

[CSM03] COHEN-STEINER D., MORVAN J.-M.: Restricted delaunay triangulations
and normal cycle. In Symposium on Computational Geometry (2003), pp. 312–321.

[CTSO03] CHEN D. Y., TIAN X. P., SHEN Y. T., OUHYOUNG M.: On visual similarity
based 3D model retrieval. Computer Graphics Forum 22 (2003), 223–232.

[DJ06] DEY T. K., JIAN S.: Defining and computing curve skeletons with medial
geodesic function. In Eurographics Symposium on Geometry Processing (2006),
pp. 143–152.

[EHMP04] EDELSBRUNNER H., HARER J., MASCARENHAS A., PASCUCCI V.: Time-
varying Reeb graphs for continuous space-time data. In Symposium on Computational
Geometry (2004), pp. 366–372.

[EHZ01] EDELSBRUNNER H., HARER J., ZOMORODIAN A.: Hierarchical Morse-
Smale complexes for piecewise linear 2-manifolds. In Symposium on Computational
Geometry (2001), pp. 70–79.

[FK97] FOMENKO A., KUNII T.: Topological Modeling for Visualization. Ed. Springer-
Verlag, 1997.

[FKS∗04] FUNKHOUSER T., KAZHDAN M., SHILANE P., MIN P., KIEFER W., TAL
A., RUSINKIEWICZ S., DOBKIN D.: Modeling by example. ACM Transactions on
Graphics 23 (2004), 652–663.

[FMK∗03] FUNKHOUSER T., MIN P., KAZHDAN M., CHEN J., HALDERMAN A.,
DOBKIN D.: A search engine for 3D models. ACM Transactions on Graphics 22
(2003), 83–105.

[FS06] FUNKHOUSER T., SHILANE P.: Partial matching of 3D shapes with priority-
driven search. In Eurographics Symposium on Geometry Processing (2006), pp. 131–
142.

[GCO06] GAL R., COHEN-OR D.: Salient geometric features for partial shape match-
ing and similarity. ACM Transactions on Graphics 25 (2006), 130–150.

[GSCO07] GAL R., SHAMIR A., COHEN-OR D.: Pose oblivious shape signature. IEEE
Transactions on Visualization and Computer Graphics 13 (2007), 261–271.

[HKDH04] HUBER D., KAPURIA A., DONAMUKKALA R., HEBERT M.: Parts-based
3D object classification. In IEEE Computer Vision and Pattern Recognition (2004),
pp. 82–89.

[HSKK01] HILAGA M., SHINAGAWA Y., KOHMURA T., KUNII T.: Topology match-
ing for fully automatic similarity estimation of 3D shapes. In SIGGRAPH (2001),
pp. 203–212.

[IJL∗05] IYER N., JAYANU S., LOU K., KALYANARAMAN Y., RAMANI K.: Three-
dimensional shape searching: State-of-the-art review and future trends. Computer-
Aided Design Journal 37 (2005), 509–530.

[JH99] JOHNSON A. E., HEBERT M.: Using spin-images for efficient multiple model
recognition in cluttered 3D scenes. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 21 (1999), 433–449.

[JZ07] JAIN V., ZHANG H.: A spectral approach to shape-based retrieval of articulated
3D models. Computer-Aided Design Journal 39 (2007), 398–407.

[KLT05] KATZ S., LEIFMAN G., TAL A.: Mesh segmentation using feature point and
core extraction. The Visual Computer 21 (2005), 865–875.

[KSDD03] KESELMAN Y., SHOKOUFANDEH A., DEMIRCI M., DICKINSO S.: Many-
to-many graph matching via metric embedding. In IEEE Computer Vision and Pattern
Recognition (2003), pp. 850–857.

[LZ07] LIU R., ZHANG H.: Mesh segmentation via spectral embedding and contour
analysis. Computer Graphics Forum 26 (2007), 385–394.

[LZQ06] LIU Y., ZHA H., QIN H.: Shape topics: a compact representation and new
algorithms for 3D partial shape retrieval. In IEEE Computer Vision and Pattern Recog-
nition (2006), pp. 2025–2032.

[MB98] MESSMER B. T., BUNKE H.: A new algorithm for error-tolerant subgraph iso-
morphism detection. IEEE Transactions on Pattern Analysis and Machine Intelligence
20 (1998), 493–504.

[MGP06] MITRA N. J., GUIBAS L., PAULY M.: Partial and approximate symmetry
detection for 3D geometry. ACM Transactions on Graphics 25 (2006), 560–568.

[Mil63] MILNOR J.: Morse Theory. Princeton University Press, 1963.

[MPB07] MARINI S., PARABOSCHI L., BIASOTTI S.: SHape Retrieval Contest 2007:
Partial matching track. In SHREC (in conjunction with IEEE Shape Modeling Interna-
tional) (2007), pp. 13–16.

[NGH04] NI X., GARLAND M., HART J.: Fair Morse functions for extracting the
topological structure of a surface mesh. ACM Transactions on Graphics 23 (2004),
613–622.

[PSBM07] PASCUCCI V., SCORZELLI G., BREMER P. T., MASCARENHAS A.: Ro-
bust on-line computation of Reeb graphs: simplicity and speed. ACM Transactions on
Graphics 26 (2007), 58.1–58.9.

[Ree46] REEB G.: Sur les points singuliers d’une forme de Pfaff complètement inté-
grable ou d’une fonction numérique. Comptes-rendus des Séances de l’Académie des
Sciences 222 (1946), 847–849.

[SBSCO06] SHARF A., BLUMENKRANTS M., SHAMIR A., COHEN-OR D.: Snap-
paste: an interactive technique for easy mesh composition. The Visual Computer 22
(2006), 835–844.

[TS05] TUNG T., SCHMITT F.: The augmented multiresolution Reeb graph approach
for content-based retrieval of 3D shapes. International Journal of Shape Modeling 11
(2005), 91–120.

[TV04] TANGELDER J. W. H., VELTKAMP R. C.: A survey of content based 3D shape
retrieval methods. In IEEE Shape Modeling International (2004), pp. 145– 156.

[TVD07] TIERNY J., VANDEBORRE J.-P., DAOUDI M.: Reeb chart unfolding based
3D shape signatures. In Eurographics (2007), pp. 13–16.

[TVD08] TIERNY J., VANDEBORRE J.-P., DAOUDI M.: Enhancing 3D mesh topo-
logical skeletons with discrete contour constrictions. The Visual Computer 24 (2008),
155–172.

[WWJ∗06] WANG S., WANG Y., JIN M., GU X., SAMARAS D.: 3D surface matching
and recognition using conformal geometry. In IEEE Computer Vision and Pattern
Recognition (2006), pp. 2453–2460.

[ZMT05] ZHANG E., MISCHAIKOW K., TURK G.: Feature-based surface parametriza-
tion and texture mapping. ACM Transactions on Graphics 24 (2005), 1–27.

submitted to COMPUTER GRAPHICS Forum (7/2008).


