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“ Any problem which is non-linear in character, which involves more than one

coordinate system or more than one variable, or where structure is initially

defined in the large, is likely to require considerations of topology and group

theory for its solution. In the solution of such problems classical analysis will

frequently appear as an instrument in the small, integrated over the whole

problem with the aid of topology or group theory. ”

Marston Morse, 1934 (Mor34)
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Foreword

This manuscript reviews my research work since my Ph.D. thesis de-

fense (2008), as a post-doctoral researcher at the University of Utah

(2008-2010) and a permament CNRS researcher at Telecom ParisTech

(2010-2014) and at Sorbonne Universités UPMC (2014-present).

This work includes results obtained in collaboration with several re-

search groups (University of Utah, Lawrence Livermore National Labora-

tory, Lawrence Berkeley National Laboratory, Universidade de Sao Paulo,

New York University, Sorbonne Universites, Clemson University, Univer-

sity of Leeds) as well as students whom I informally or formally advised.

This research has been partially funded by several grants, including

a Fulbright fellowship (US Department of State), a Lavoisier fellowship

(French Ministry for Foreign Affairs), a Digiteo grant (national funding,

“Uncertain Topo-Vis” project 2012-063D, Principal Investigator), an ANR

grant (national funding, “CrABEx” project ANR-13-CORD-0013, local in-

vestigator), a CIFRE partnership with Renault and a BPI grant (national

funding, “AVIDO” project, local investigator).

During this period, I taught regularly at the University of Utah (2008-

2010), Telecom ParisTech (2011-present), Sorbonne Universités (2011-

present) and since 2013 at ENSTA ParisTech and University of Versailles,

where I am the head instructor for the scientific visualization course.

This manuscript describes most of the results published over this pe-

riod (chapter 4: (TGSP09, TP12), chapter 5: (TGSP09, GGL∗14, TDN∗12),

chapter 6: (STK∗09, BWT∗09, BWT∗11, GABCG∗14) chapter 7: (TP12,

TDN∗12, TDN∗11, STP12, PST∗13, PST∗15, ENS∗12) chapter 8: (CGT∗15,

KTCG15, GST14)). I refer the interested reader to the following publica-

tions (TBTB12, TTB12, TTB13, MTT∗13, GTJ∗13) for additional results not

described in this document.

The reading of this manuscript only requires basic background in

Computer Science and algorithmic; most of the mathematical notions are

introduced in a dedicated chapter (chapter 3).

Chapter 2 provides a short summary of the entire manuscript.
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1Introduction

In early 2013, a group of researchers led by French scientists published

in Nature a paper entitled “A vast, thin plane of corotating dwarf galaxies

orbiting the Andromeda galaxy” (ILC∗13). This paper reported new intrigu-

ing observations that showed that a majority of the dwarf galaxies which

orbit the larger Andromeda galaxy was actually rotating in a very thin,

common plane structure. These observations then contradicted the state-

of-art models which assumed that dwarf galaxies’ locations followed an

isotropic random distribution. This discovery raised many fundamental

open questions that can potentially reshape the entire understanding of

the universe formation process, as it implies that a still-to-be-found phe-

nomenon seems to control the geometry of cosmos gas flow.

Beyond its academic outreach, this work drew a lot of attention from

the French media, as one of the co-authors of the paper was a French

teenager (and probably one of the youngest co-authors of a Nature pub-

lication). This student was doing a summer internship in a French astro-

physics laboratory where he was assigned the design of a simple software

prototype for the visualization of dwarf galaxy measurements. This is

only when they started to visualize these measurements in 3D that these

researchers made the astonishing observation of a coplanar orbit distribu-

tion, an hypothesis that was later confirmed through numerical estima-

tions. In this study, while the numerical verification of the co-planarity

hypothesis can be considered as a trivial task, formulating the original

idea of this hypothesis cannot. Here, simple visualization tools precisely

enabled this initial discovery as they helped these researchers formulate

such original insights about their data.

This anecdote effectively illustrates one of the key motivations of Sci-

entific Visualization, which is a sub-field of Computer Science that aims

at developing efficient algorithms for the graphical and interactive explo-

ration of scientific data, for the purpose of hypothesis formulation, analy-

sis and interpretation.
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2 Chapter 1. Introduction

While galaxy orbits are made of moderately simple geometries, recent

acquisition devices or high-performance computing simulations nowa-

days generate large-scale data-sets of extremely precise resolution, which

can encompass features with highly complex geometry, challenging their

visualization and analysis. Therefore, research in Scientific Visualization

aims at addressing several general challenges which impact distinct stages

of the scientific methodology:

1. Abstraction: The definition of efficient analysis algorithms able to

abstract high-level features (that humans can visualize, measure and

understand) from raw data;

2. Interaction: The definition of efficient algorithms for the interactive

manipulation, simplification and exploration of these high-level fea-

tures;

3. Analysis: The definition of efficient algorithms for the geometrical

measurement of these features, to serve as base tools for interpreta-

tion tasks in specific application problems.

Regarding scalar valued data, Topological Data Analysis form a family

of techniques that gained an increasing popularity in the Scientific Visual-

ization community over the last two decades, since it precisely enables the

robust capture and multi-scale representation of geometrical objects that

often directly translate into features of interest application wise.

In this manuscript, I review the main results of my research over the

last seven years in this area, where I contributed to Topological Data Anal-

ysis in each of the topics described above (abstraction, interaction and

analysis). I also discuss research perspectives for Topological Data Anal-

ysis as well as preliminary results regarding the analysis of multivariate

and uncertain data.

The rest of the manuscript is organized as follows:

• Chapter 2 presents a short summary of the entire manuscript;

• Chapter 3 describes the theoretical background of Topological Data

Analysis and briefly reviews the state-of-the-art;

• Chapter 4 describes my contributions to the problem of defining

efficient algorithms for the computation and simplification of topo-

logical abstractions of scalar data;

• Chapter 5 describes my contributions to the problem of defining ef-

ficient algorithms for interacting with topological data abstractions;
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• Chapter 6 describes my contributions to the problem of defining

efficient analysis algorithms of topological abstractions in specific

application driven problems;

• Chapter 7 describes my contributions to related problem which I

addressed with solutions derived or inspired from Topological Data

Analysis;

• Chapter 8 describes my view on the perspectives and upcoming

challenges for Topological Data Analysis and includes preliminary

results regarding the analysis of multivariate and uncertain data.

• Chapter 9 finally concludes this manuscript.
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This chapter summarizes the entire manuscript and presents a sum-

mary of my activities since my Ph.D. thesis defense in October 2008.

First, I summarize as a starting point the main results of my Ph.D.

thesis. Then my research activity as a post-doctoral researcher and a per-

manent researcher is reviewed. This report summarizes my main results

as well as the perspectives of my research.

Second, I briefly describe my teaching activities and responsibilities.
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2.1. Research activity 7

2.1 Research activity

My research deals with the algorithmic aspects of the analysis of discrete

geometrical data. Specifically, my core expertise lies in the topological

analysis of scalar data. The addressed problems are mostly application

driven and a strong emphasis is given on the practical applicability of the

designed algorithms with specific applications in mind, in particular to

scientific visualization.

2.1.1 Ph.D. thesis summary

My Ph.D. thesis, entitled “Reeb graph based 3D shape modeling and ap-

plications” (Tie08), dealt with the geometrical analysis of triangulated sur-

faces for shape modeling and comparison. It was supervised by Pr. Jean-

Philippe Vandeborre and Pr. Mohamed Daoudi of the 3D SAM team of

Lille1 University (France), a research group dedicated to pattern recogni-

tion and shape analysis.

My main Ph.D. research results include new automatic algorithms

for the computation of skeletal shape representations based on the

Reeb graph. I applied these algorithms in several problems related

to Computer Graphics, including skeletonization for shape deformation

(TVD06b, TVD06a, TVD08a), shape segmentation (TVD07b), animation

reverse engineering (TVD08b) and shape comparison (TVD07a, TVD09).

In that latter topic, I developed a new approach for the partial compari-

son of triangulated surfaces which outperformed competing approaches

on the international benchmark SHREC 2007.

During this thesis, I gained a strong knowledge in topological data

analysis, as I was a user of these tools for my own algorithms.

2.1.2 Environment

After my Ph.D. defense, I wanted to develop my expertise in topological

data analysis and apply these techniques to a different class of problems.

I joined the Scientific Computing and Imaging Institute at the University

of Utah in late 2008 as a Fulbright scholar. There, I considerably strength-

ened my expertise in topological techniques, addressed harder problems

dealing with more complex data (in geometry, dimension and size) and

started to explore the field of Scientific Visualization.

I joined the CNRS in late 2010 as a permanent researcher in the image
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processing group of Telecom ParisTech, where I continued my research at

the interface between Computer Graphics and Scientific Visualization.

Since September 2014, I am part of the Scientific Computing depart-

ment of the Computer Science laboratory of Sorbonne Universités UPMC,

which offers a unique environment to develop research activities in Sci-

entific Visualization thanks to its strong inter-disciplinary collaboration

culture.

2.1.3 Main results

Since 2008, my research focused on the definition of efficient algorithms

for the computation of topological abstractions of scalar data as well as ef-

ficient algorithms for their exploitation in practical problems. The related

results can be classified in four categories, described in the following:

1. Abstraction (chapter 4);

2. Interaction (chapter 5);

3. Analysis (chapter 6);

4. Related Problems (chapter 7).

Abstraction

In this topic, I focused on the definition of algorithms with possibly non-

optimal time complexity but with efficient practical behavior for the con-

struction of topological abstractions or the topological simplification of

scalar data. This work is described with further details in chapter 4.

The time complexity of most algorithms for the construction or pro-

cessing of topological abstractions is dictated by the number of critical

points in the input scalar field. Often in practice, it is possible how-

ever to easily discriminate critical points that are not relevant application-

wise. Therefore, there exists an applicative interest for an efficient pre-

processing of an input scalar field, that would minimally perturb it to re-

move a given set of critical points. We introduced such a technique in 2012

for piecewise linear scalar fields defined on surfaces (TP12). This approach

is based on a new iterative algorithm for the constrained reconstruction of

sub- and sur-level sets. Experiments showed that the number of iterations

required for our algorithm to converge is rarely greater than 2 and never

greater than 5, yielding O(nlog(n)) practical time performances. Thanks

to its simplicity, ease of implementation, speed, robustness and generality,
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we consider this algorithm as the reference for the problem of topological

simplification of scalar data on surfaces.

The Reeb graph (Ree46) has been a popular topological abstraction

for the efficient indexing of the connected components of level sets of

scalar data, for feature extraction, segmentation and exploration purposes.

While an algorithm with optimal time complexity existed for its con-

struction on surfaces (CMEH∗03), for volumes, algorithms with practi-

cal quadratic behavior were only available. We introduced an algorithm

called loop surgery (TGSP09) that, given an input scalar field, modifies the

volume by a sequence of cuts guaranteeing the resulting Reeb graph to be

loop free. Thus, the loop surgery reduces the Reeb graph computation to

the simpler problem of computing a contour tree, for which well known

algorithms exist that are theoretically efficient and fast in practice (CSA00).

While the loop surgery procedure has a quadratic worst case complexity,

experiments showed in practice that our overall approach achieved virtu-

ally linear scalability and outperformed competing approaches by up to

3 orders of magnitude. We considered this algorithm as the reference for

the problem of Reeb graph computation on volumes until an optimal time

complexity algorithm was introduced three years later (Par12).

Interaction

In this topic, I focused on the definition of algorithms capable of inter-

acting with topological abstractions. This includes simplification mecha-

nisms as well as atomic editing operations for user driven data segmenta-

tion purposes. This work is further described in chapter 5.

When dealing with noisy data sets, level set extraction can yield many

connected components that prevent a clear visualization of the main com-

ponents of the isosurface due to occlusion. We illustrated how the Reeb

graph could be used as a query data-structure to extract isosurfaces in

optimal time and how it could be simplified according to a user pro-

vided metric to progressively remove connected components considered

as noise. While such a process was known in the community for a long

time, our Reeb graph computation scheme for volumes (TGSP09) enabled

such a capability for the first time at interactive rates.

Based on this approach, we introduced next an isosurface based visual-

ization widget for a large-scale simulation monitoring system. Large scale

numerical simulations running on super-computers are often analyzed on-

line with advanced monitoring systems (KVP∗08), providing the end users
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with real time quantitative indicators describing the behavior of the sim-

ulation, allowing them to identify instantly possible run-time issues (mis-

takes in parameter settings for instance). However, the interpretation of

these indicators require strong user expertise and sometimes problematic

configurations are difficult to read from those. Therefore, there exists an

application need for on-the-fly visualizations of numerical simulations for

monitoring purposes. However, large scale simulation time steps are usu-

ally too large to be interactively transfered to a remote workstation for

visualization. Moreover, due to their size, not all of the time-steps of such

a simulation can be stored on the super-computer where they have been

generated. This prevents remote rendering and interaction and requires

in-situ visualization generation. We addressed this problem by designing

a prototype (STK∗09) capable of generating in-situ isosurface renderings.

The visualization of an isosurface is dictated by a number of parameters

such as view point and isovalue and possibly topological simplification

threshold. Therefore we implemented an algorithm that finely samples in

batch mode this parameter space and generates for each parameter com-

bination an in-situ offline 2D rendering. Even by finely sampling this

parameter space, the data size of the output collection of 2D renderings

for a given time-step is still guaranteed to be orders of magnitude smaller

than that of the time-step itself, allowing a remote emulation of the inter-

active control of these parameters. This technique was enabled by our fast

isosurface extraction and simplification algorithms described previously.

This prototype enabled simulation users to obtain for the first time qual-

itative visual insights from their running simulations. A similar strategy

has been developed independently by Kitware Inc. five years later in its

visualization system ParaView Cinema (Kit14).

The Morse-Smale complex has been a popular topological abstrac-

tion for the efficient indexing of gradient integral lines in scalar data,

for feature extraction, exploration and segmentation. In many applica-

tion scenarios, the domain decomposition it provides directly corresponds

to meaningful segmentations application-wise with excellent classification

scores. However, such an approach still results in general in the identifica-

tion of false negatives as compared to a manual labeling by a domain ex-

pert. Therefore, we derived a combinatorial approach (GGL∗14) to perturb

the input scalar field’s discrete gradient according to some prior segmenta-

tion knowledge (either obtained interactively or automatically). This algo-

rithm guarantees that the input segmentation constraints are captured as

separatrices in the Morse-Smale complex. Such a framework enables the
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incorporation of automatic or interactive prior knowledge in Morse-Smale

complex based segmentation, while still benefiting from its automatic and

multi-scale nature. In practice, this enables to automatically extend sparse

user knowledge into correct segmentations.

In Computer Graphics, surface quadrangulation representations are

often preferred over triangulations for tasks such as texture mapping or

animation. Quadrangulations can be obtained by partitioning the surface

in a set of quadrangular charts (which can be further refined as desired).

However, end-users need to control the overall layout and topology of this

partitioning (chart number and boundary alignment, position, valence and

number of extraordinary vertices) as it can affect the output animation.

We introduced a framework for the user-driven quadrangular segmenta-

tion and parameterization of surfaces called Reeb atlases (TDN∗12), which

provides an explicit and robust control on the configuration of extraordi-

nary vertices. It is based on a number of atomic operations defined on

the Reeb graph of an underlaying harmonic scalar field. These operations

include the insertion, deletion, subdivision and merging of charts as well

fractional critical point editing. The latter capability was based on an al-

gorithm for the definition and control of highly degenerate configurations

usually avoided in topological data analysis. Experiments demonstrated

the interactivity and flexibility of the approach, as well as its ability to gen-

erate quadrangulations with high quality statistics, while robustly fitting

the user defined constraints.

Analysis

In this topic, starting from precise application problems, I explored how

algorithms from topological data analysis could be adapted to conduct

interactive data exploration and quantitative analysis. This work is de-

scribed with further details in chapter 6.

The interpretation of numerical simulations often requires the quan-

titative analysis of features of interest. In the context of turbulent com-

bustion simulations, we developed a framework based on the split tree (a

variant of the Reeb graph) to extract, enumerate and track flames through

time (BWT∗09, BWT∗11). This approach is based on a multi-scale seg-

mentation of the data into connected components of sur-level sets of fuel

consumption rates. Such an approach enables to segment the main flames

of the simulation and to track them through time. We built an interface on

top of this algorithm capable of visualizing these flames as well as their
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temporal evolution. Moreover, our approach enabled the computation of

quantitative metrics such as flame volume and life-span. Such quantitative

indicators helped the end users interpret their simulation to identify and

characterize distinct combustion regimes in the vicinity of the burner.

In chemistry, the interactions between atoms have a major influence

on the chemical properties of molecular systems. While covalent inter-

actions impose the structural integrity of molecules, noncovalent interac-

tions govern more subtle phenomena such as protein folding or molecular

bonding. The understanding of these types of interactions is necessary for

the interpretation of many biological processes and chemical design tasks.

While the extraction and characterization of covalent interactions can be

performed by a topological analysis of the electron density, noncovalent

interactions are characterized by low electron densities and only slight

variations of them – challenging their extraction and characterization. To

address this problem, we presented the first combinatorial algorithm for

the automated extraction and characterization of covalent and noncova-

lent interactions in molecular systems (GABCG∗14). The proposed algo-

rithm is based on a joint topological analysis of the signed electron density

and the reduced gradient. Combining the connectivity information of the

critical points of these two scalar fields enables not only to identify auto-

matically these interactions but also the atoms and bonds involved in each

localized interaction. Experiments on a variety of molecular systems, from

simple dimers to proteins found in DNA, demonstrated the ability of our

technique to robustly extract these interactions and to reveal their struc-

tural relations to the atoms forming the molecules. For simple systems,

our analysis corroborated the observations made by the chemists while it

provided new visual insights on chemical interactions for larger molecular

systems.

Related Problems

In this topic, I explored related problems that have been addressed with a

solution derived or inspired from topological data analysis. This work is

described with further details in chapter 7.

Many geometry processing problems involve numerically sensitive

tasks such as partial differential equation resolution, gradient field inte-

gration, or scale-space computation. In many cases, the topology of the

numerical solution is a major consideration. In meshing for instance, ex-

traordinary vertices often correspond to singularities and these important
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constraints must be respected. However, numerical noise often occurs and

it can alter the topology of the solution. This is the case for instance for

the Laplace equation subject to Dirichlet boundary conditions. Beyond its

ubiquity in geometry processing, this equation plays an important role in

electromagnetism, astronomy and fluid dynamics. Given a finite set of ex-

trema constraints along with corresponding target values, the solution to

this equation is a piecewise linear scalar field with prescribed values at the

constraints and a zero-valued Laplace operator everywhere else. An im-

portant property of this equation is that the Dirichlet constraints should be

the only extrema of the solution. However, since the Laplacian is a second-

order operator, it is difficult to discretize for piecewise linear functions.

Hence several discretization strategies have been proposed (WMKG07).

The popular discretization based on cotangent weights (PP93) is usually

preferred since it produces smooth level sets. However, in practice, the

numerical sensitivity of the cotangent operator induces numerical noise

which may generate additional critical points, which prevents the solu-

tion from conforming to its formal description. We presented a simple

technique based on our scalar field simplification algorithm (TP12) that

automatically perturbs this solution to only admit extrema on the Dirich-

let constraints. Therefore, our approach can be used to generate a solution

with both the geometrical accuracy of the cotangent weight Laplacian and

the topological robustness of the combinatorial Laplacian, yielding a solu-

tion with topological guarantees that is exploitable for certified geometry

processing.

This latter result served as a key ingredient for the robust editing of

the Reeb graph in our work on surface quadrangulation with Reeb atlases

(TDN∗12, TDN∗11). In addition to its interactive quadrangular segmenta-

tion and parametrization capabilities, we further enriched this approach

by allowing the user to refine the connectivity of each quadrangular chart

with the notion of connectivity texture, which could be either manually

designed (TDN∗12) or automatically retrieved from a collection of pre-

designed quadrangulation and automatically fitted on the input surface

(TDN∗11).

A fundamental step in stitching several pictures to form a larger

panorama is the computation of boundary seams that minimize the visual

artifacts in the transition between images. Current seam computation al-

gorithms use optimization methods that may be slow, sequential, memory

intensive, and prone to finding suboptimal solutions related to local min-

ima of the chosen energy function. Moreover, even when these techniques
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perform well, their solution may not be perceptually ideal (or even good).

Such an inflexible approach does not allow the possibility of user-based

improvement.

Surprisingly, in this problem, the analysis of the topology of the layout

of registered images helps in selecting relevant subsets of pairwise image

boundaries to be included in the overall seam network. Based on this

analysis, we introduced a technique named Panorama Weaving (STP12)

for seam creation and editing in image panoramas. It provides a proce-

dure to create automatically boundaries for panoramas that is fast, has

low memory requirements and is easy to parallelize. This technique often

produces seams with lower energy than the competing global technique,

while running orders of magnitude faster. Second, it provides the first

interactive technique for the exploration of the seam solution space. This

powerful editing capability allows the user to automatically extract energy

minimizing seams given a sparse set of constraints. A variety of empirical

results showed the importance of fast seam computation for interactivity

and the usefulness of seam space exploration for the correction of visual

artifacts. We consider this algorithm as the reference for the problem of

seam creation and editing in panoramas. This approach served as the

basis for our results on the automatic seam computation for large scale

panoramas (PST∗13, PST∗15).

Scientific Visualization has become a standard component in scien-

tific software. However, unlike traditional components of the scientific

pipeline (such as mathematical modeling or numerical simulation), only

few research efforts have been devoted to the verification of the accuracy,

reliability and robustness of its algorithms. Inspired by Morse Theory and

Topological Data Analysis, we introduced a framework for the topological

verification of isosurface extraction implementations based on the trilinear

interpolant (ENS∗12). In particular, we developed simple algorithms based

on stratified Morse theory and digital topology to evaluate the topologi-

cal invariants of an isosurface (Euler characteristic and Betti numbers) to

compare them with these of the actual surface meshes returned by the im-

plementations under evaluation. This methodology revealed unexpected

behaviors and even coding mistakes in publicly available popular isosur-

face codes. In addition to prior work on geometrical verification, we con-

sider this approach as the reference for the problem of isosurfacing code

verification.
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2.1.4 Perspectives

Three-dimensional numerical simulation established itself as a necessary

tool for knowledge discovery in many fields of science. It enables to evalu-

ate, improve and analyze theoretical models especially when experimental

validation is made difficult for financial, technical or legal reasons. In in-

dustry, simulation is ubiquitous in the modeling process of a product.

Traditionally, such simulations are run on High-Performance Comput-

ing (HPC) resources while their output (typically a scalar field represent-

ing a simulated quantity at a given time-step) is transfered on a remote

work station for post-processing purposes: visualization and analysis.

This overall methodology turns out to be incompatible with the

characteristics of the upcoming generation of super-computers (expected

around 2018) with predicted computing performances at the ExaScale

(1018 FLoating-point Operations Per Second, FLOPS), since:

1. it will come with unprecedented technical challenges that cannot

be addressed by simply extending existing frameworks (Har12) and

which will impose new constraints on data analysis algorithms;

2. it will also enable radically novel simulation usages (DA13) which

will result in novel types of data to analyze.

These perspectives are discussed with further details in chapter 8.

In-Situ Data Analysis

Current estimations (Har12) expect an increasing imbalance between pre-

dicted data throughputs (1012 bytes/s (DA13)) and persistent storage (1010

bytes/s) or global network bandwidths (most HPC users are located off-

site). In this scenario, traditional off-line post-processing is no longer an

option given this increasing bottleneck.

Therefore, it is necessary to move data analysis algorithms as close

as possible to their input source (the numerical simulation algorithms) in

order to simply avoid this bottleneck. In particular, to minimize the usage

of persistent storage, it is necessary that analysis algorithms run on the

same hardware as the simulation and that they run during the simulation

process.

Topological data analysis demonstrated its robustness, genericity and

practical interest in various applications. However, the above require-

ments represent major theoretical challenges for Topological Data Anal-

ysis, that I will attempt to address in the next few years:
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• Parallel and Distributed Algorithms: To make an optimal usage of

HPC hardware, analysis algorithms should be able to run in par-

allel in a shared as well as in a distributed memory model. This is

a radical challenge for the computation of Topological Abstractions,

since its robustness precisely come from the global consistency of

its algorithms. In particular, these rely on a global analysis of the

data, requiring global low-level operations and data-structures (sort,

breadth-first searches, union-find data-structures). While the paral-

lelism of the latter operations and data-structures have been studied,

existing solutions for these low level operations do not guarantee ef-

ficient and scalable topological data analysis algorithms, which have

to be completely reviewed. I will attempt to address this problem.

• Interruptible Algorithms: In the Exascale scenario, the persistent stor-

age of each time step of a solution will no longer be possible. There-

fore, it is necessary to develop analysis algorithms capable of pro-

cessing a time-step while it remains in the simulation code’s mem-

ory. This means that analysis algorithms should be interruptible:

they should be able to be stopped at any time (when a time-step

is deleted from memory) while still providing a globally consistent

approximation of the output (that can be used for further process-

ing). A direction to achieve this effect is to design coarse-to-fine algo-

rithms. This represents a major theoretical challenge for Topological

Data Analysis, whose algorithms have been traditionally thought in

a fine-to-coarse scheme (topological abstractions are first computed

exactly and then simplified through mechanisms such as persistent

homology). This issue raises several algorithmic challenges as well

as theoretical questions (for instance, in a coarse-to-fine model, what

is the relation between the computed coarse-to-fine hierarchy and

the fine-to-coarse hierarchy provided by persistence simplification?).

I will attempt to address both problems in the next few years.

Preliminary results I am currently working with the Master student

Charles Gueunet and Pierre Fortin (assistant professor at the Scientific

Computing department of Sorbonne Universités UPMC, with strong HPC

expertise) on designing efficient and scalable algorithms for the Contour

Tree computation, simplification and data segmentation for a shared mem-

ory parallel model. Our preliminary results in this topic are promising

as they seem to indicate that a virtually linear scaling is expectable for
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large-scale data-sets (which would outperform previous attempts of the

state-of-the-art).

Starting in early 2016, Charles will start a Ph.D. thesis under my super-

vision in the framework of an industrial partnership with Kitware S.A.S.,

the French subsidiary of Kitware Inc. (worldwide leader in open-source

visualization software). During this Ph.D. (2016-2019), we will address

each of the problems mentioned above for the simple case of the Contour

Tree. More advanced topological abstractions will be considered later on.

Analysis of Function Spaces

The HPC performance improvements observed over the last years allow

new simulation usages that will become a standard at the ExaScale. This

new usages raise new important problems for visualization and data anal-

ysis:

• Multi-physics Simulations: Given the recent HPC performances, it be-

comes now possible to model complex macroscopic processes by

jointly simulating multiple physical phenomena (for instance: joint

thermodynamic, computational fluid dynamics and material resis-

tance simulations). In this context, a given simulation generates a

family of scalar functions that represent drastically (and physically)

different quantities (temperature, flow vorticity, material stress, etc.).

This variability leads concretely to scalar fields having drastically

different range values and dynamics. The joint analysis of several

scalar fields is therefore a major challenge that needs to be addressed

to identify and quantify possible geometrical correlations between

quantities. However, traditionally, Topological Data Analysis only

deals with the analysis of one scalar function defined on a single ge-

ometry. Therefore, in this topic, I will extend the concepts of Topo-

logical Data Analysis to multi-variate scalar functions. This effort will

be accompanied with the design of algorithms that are efficient in

practice for the construction and simplification of these generalized

topological abstractions, and their exploitation in specific application

problems.

Preliminary results In the context of a collaboration with the Uni-

versity of Leeds, we are currently working on the design of an algo-

rithm with efficient practical performances for the problem of Reeb

space computation (EHP08). This construction generalizes the no-

tion of Reeb graph to multivariate scalar functions. While an al-
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gorithm has been described for its approximation (CD14), no algo-

rithm with efficient practical behavior has been documented for its

exact computation and simplification. We addressed this problem

and I am currently implementing this approach. In the process of

defining this algorithm, we needed to introduce a novel construc-

tion called Fiber Surfaces, which are pre-images of curves through

bivariate functions. Surprisingly we discovered that this novel con-

struction was somehow implicitly known by the volume rendering

community for multi-dimensional transfer function definition. How-

ever, this community could only visualize a volume rendering of

these fiber surfaces and no algorithm was documented to extract

them geometrically. We therefore presented a simple approach to

compute fiber surfaces and showed the applicative interests of such

constructions for data segmentation purposes in various application

fields (CGT∗15). However this algorithm was slow in practice for

large data-sets and was only approximate. Therefore, we introduce

a second algorithm for the exact computation of fiber surfaces as well

as several acceleration mechanisms (generalized from isosurface ex-

traction acceleration) which enabled an interactive exploration of the

space of fiber surfaces (KTCG15). We consider this latter algorithm

as the reference for the problem of efficient and exact fiber surface

computation in bivariate scalar fields. In this topic, I will therefore

continue this research effort by generalizing other topological ab-

stractions and deriving other application driven algorithms capable

of processing multivariate data.

• Uncertain Simulations:

A physical model is often dictated by a number of parameters (ini-

tial conditions, boundary conditions, etc.). Given the recent HPC

advances, the fine sampling of this parameter space becomes feasi-

ble (yielding one simulation output per combination of parameters).

This process, called parameter study, is central to the understand-

ing of the uncertainty that accompanies any physical process. For

instance, it enables to identify parameter ranges for an efficient and

safe functioning of a complex system. This type of simulation also

generates a family of scalar fields, that model an uncertain process.

Analyzing this family as a whole to identify, extract and understand

the conditions of appearance of features of interest is a major up-

coming challenge in visualization and analysis.
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From a theoretical point of view, the topological analysis of multi-

variate fields seems to have an applicative interest only when the

dimension of the range is lower than the dimension of the domain

(typically three). Beyond, another direction should be considered.

Therefore, the topological analysis of multivariate fields seems of lit-

tle importance for the processing of uncertain data. Instead, in this

topic, I will address the problem of generalizing the constructions of

Topological Data Analysis to uncertain scalar fields (that map each

point of the domain to a random variable).

Preliminary results In the context of an exploratory project for

which I was the principal investigator (called “UnTopoVis”, national

funding, Digiteo), I introduced the first non-local, combinatorial

characterization of critical points and their global relation in 2D un-

certain scalar fields (GST14). The characterization is based on the

analysis of the support of the probability density functions of the

input random variables. Given two scalar fields representing reli-

able estimations of the bounds of this support, our strategy identi-

fies mandatory critical points: spatial regions and function ranges

where critical points have to occur in any realization of the input

uncertain data. The algorithm provides a global pairing scheme for

mandatory critical points which is used to construct mandatory join

and split trees. These trees enable a visual exploration of the com-

mon topological structure of all possible realizations of the uncertain

data. To allow multi-scale visualization, we introduce a simplifica-

tion scheme for mandatory critical point pairs revealing the most

dominant features. Our technique is purely combinatorial and han-

dles parametric distribution models and ensemble data. It does not

depend on any computational parameter and does not suffer from

numerical inaccuracy or global inconsistency. The algorithm exploits

ideas of the established join/split tree computation. It is therefore

simple to implement, and its time complexity is output-sensitive. Ex-

periments demonstrated the accuracy and usefulness of our method

on synthetic and real-world uncertain data-sets. Thanks to its ro-

bustness and multi-scale nature, we consider this approach as the

reference algorithm for the problem of mandatory critical point ex-

traction in 2D uncertain scalar fields. Despite this strong result, this

first attempt at extending Topological Data Analysis to uncertain

data raised even more questions than answers. In particular, de-
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spite their strong applicative interest, the topological features that

are common to all realizations of an uncertain process (i.e. that have

a probability of appearance of 1) only constitute a sub-set of the fea-

tures users are interested in. From a theoretical point of view, a

natural question that arises is “What about the critical points with a

probability of appearance lower than 1?”. This question has strong

applicative implications. Often, the phenomena under investigation

can reveal distinct regimes and it is important to understand the

probability of appearance of these regimes as well as the conditions

(sets of parameters) for their appearance. This is one of the goals

of the AVIDO research project (started in October 2015), for which I

am a local investigator and for which I will hire an engineer and a

post-doctoral researcher.

2.1.5 Development Platform

Since early 2014, I develop a C++ visualization platform that wraps

around the open-source platform ParaView, codenamed WTFIT, that is

specialized for the development of efficient Topological Data Analysis al-

gorithms. Its core algorithms are based on a previous platform (based on

OpenGL only) that I started to write in 2010. Its purpose is fourfold:

1. Enable an easy and rapid writing of advanced and efficient topologi-

cal data analysis programs. In particular, since it relies on ParaView,

the developer only needs to focus on the writing of the core analysis

algorithm, without having to deal with IO, rendering or interaction.

Moreover, thanks to the ParaView pipeline hierarchy, the developer

can easily combine its data analysis algorithms with any of the rou-

tines already implemented in ParaView.

2. Centralize all the developments of my students and I into one coher-

ent software program.

3. Facilitate the technological transfer of my algorithms to collaboration

partners. Since ParaView is one of the most popular visualization

platform, it takes only little effort for users already familiar with

ParaView to interact with my algorithms.

4. Facilitate code dissemination. Since ParaView and VTK are open-

source, it is easy for other researchers to compile and run the mod-

ules of WTFIT for reproduction purposes.
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Publication Type Number

Edited books 1

Peer-reviewed journals 17

Peer-reviewed conferences 10

Peer-reviewed book chapters 2

Invited conference papers 2

Table 2.1 – Publication summary.

Ever since, all my students develop their research projects in this plat-

form as individual modules. I wrote an extensive documentation as well

as a detailed tutorial (including examples) that I ask all my students to

go through during the first week of their internship or Ph.D. thesis, as a

training process.

As much as possible, each time a paper will be published, the corre-

sponding module will be released in open-source together with the paper.

To my understanding, and this is one of the core lessons that I learned

at the Scientific Computing and Imaging Institute, research advances have

to be accompanied with usable and efficient software to advertise the work

and more importantly, to make dissemination and transfer really happen.

Moreover, this embraces my personal view as a computer scientist since

software is in the end the long term goal of our research.

2.1.6 Publications

Pre-prints of the following publications can be downloaded from my web

page: http://lip6.fr/Julien.Tierny.

Ph.D. Thesis

1. Julien Tierny, “Reeb graph based 3D shape modeling and applications”,

Ph.D. thesis. Committee: S. Tison (President), A. Baskurt (Reviewer),

B. Lévy (Reviewer), C. Labit (Committee), A. Srivastava (Commit-

tee), M. Daoudi (Advisor), J.P. Vandeborre (Co-advisor). Lille1

University, October 2008.

http://lip6.fr/Julien.Tierny
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Edited books

2. Valerio Pascucci, Xavier Tricoche, Hans Hagen, and Julien Tierny,

“Topological Methods in Data Analysis and Visualization: Theory, Algo-

rithms and Applications”, Springer, 2011 (ISBN: 978-3-642-15013-5).

Peer-reviewed journals

3. Hamish Carr, Zhao Geng, Julien Tierny, Amit Chattopadhyay,

Aaron Knoll, “Fiber Surfaces: Generalizing Isosurfaces to Bivariate

Data”, Computer Graphics Forum, Proc. of EuroVis 2015.

4. Sujin Philip, Brian Summa, Julien Tierny, Peer-Timo Bremer, Valerio

Pascucci, “Distributed Seams for Gigapixel Panoramas”, IEEE Transac-

tions on Visualization and Computer Graphics, 2015.

5. Attila Gyulassy, David Guenther, Joshua Levine, Julien Tierny, Vale-

rio Pascucci, “Conforming Morse-Smale Complexes”, IEEE Transactions

on Visualization and Computer Graphics, Proc. of IEEE VIS 2014.

6. David Guenther, Roberto Álvarez Boto, Julia Contreras Garcia, Jean-

Philip Piquemal, Julien Tierny, “Characterizing Molecular Interactions

in Chemical Systems”, IEEE Transactions on Visualization and Com-

puter Graphics, Proc. of IEEE VIS 2014.

7. David Guenther, Joseph Salmon, Julien Tierny, “Mandatory Criti-

cal Points of 2D Uncertain Scalar Fields”, Computer Graphics Forum,

Proc. of EuroVis 2014.

8. Jean-Marc Thiery, Julien Tierny, Tamy Boubekeur, “Jacobians and

Hessians of Mean Value Coordinates for Closed Triangular Meshes”, The

Visual Computer, 2013.

9. Julien Tierny and Valerio Pascucci, “Generalized Topological Simplifi-

cation of Scalar Fields on Surfaces”, IEEE Transactions on Visualization

and Computer Graphics, Proc. of IEEE VIS 2012.

10. Julien Tierny, Joel Daniels II, Luis Gustavo Nonato, Valerio Pascucci

and Claudio Silva, “Interactive Quadrangulation with Reeb Atlases and

Connectivity Textures”, IEEE Transactions on Visualization and Com-

puter Graphics, 2012.
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11. Brian Summa, Julien Tierny and Valerio Pascucci, “Panorama Weav-

ing: Fast and Flexible Seam Processing”, ACM Transactions on Graph-

ics, Proc. of ACM SIGGRAPH 2012.

12. Jean-Marc Thiery, Julien Tierny and Tamy Boubekeur, “CageR: Cage-

based Reverse Engineering of Animated 3D Shapes”, Computer Graphics

Forum, 2012.

13. Tiago Etiene, Luis Gustavo Nonato, Carlos Scheidegger, Julien

Tierny, Tom Peters, Valerio Pascucci, Mike Kirby and Claudio Silva,

“Topology Verification for Isosurface Extraction”, IEEE Transactions on

Visualization and Computer Graphics, 2012.

14. Jean-Marc Thiery, Bert Buchholz, Julien Tierny and Tamy

Boubekeur, “Analytic Curve Skeletons for 3D Surface Modeling and

Processing”, Computer Graphics Forum, Proc. of Pacific Graphics

2012.

15. Julien Tierny, Joel Daniels II, Luis Gustavo Nonato, Valerio Pascucci

and Claudio Silva, “Inspired Quadrangulation”, Computer Aided De-

sign, Proc. of ACM Solid and Physical Modeling 2011.

16. Peer-Timo Bremer, Gunther Weber, Julien Tierny, Valerio Pascucci,

Marc Day and John Bell, “Interactive Exploration and Analysis of

Large Scale Simulations Using Topology-based Data Segmentation”, IEEE

Transactions on Visualization and Computer Graphics, 2010.

17. Julien Tierny, Attila Gyulassy, Eddie Simon and Valerio Pascucci,

“Loop surgery for volumetric meshes: Reeb graphs reduced to contour

trees”, IEEE Transactions on Visualization and Computer Graphics,

Proc. of IEEE VIS 2009.

18. Julien Tierny, Jean-Philippe Vandeborre and Mohamed Daoudi,

“Partial 3D shape retrieval by Reeb pattern unfolding”, Computer Graph-

ics Forum, 2009.

19. Julien Tierny, Jean-Philippe Vandeborre and Mohamed Daoudi,

“Enhancing 3D mesh topological skeletons with discrete contour constric-

tions”, The Visual Computer, 2008.
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Peer-reviewed conferences

20. Sujin Philip, Brian Summa, Julien Tierny, Peer-Timo Bremer, Vale-

rio Pascucci, “Scalable Seams for Gigapixel Panoramas”, Eurographics

Symposium on Parallel Graphics and Visualization, 2013.

21. Mariem Gargouri, Julien Tierny, Erwan Jolivet, Philippe Petit, Elsa

Angelini, “Accurate and robust shape descriptors for the identification of

rib cage structures in CT-images with Random Forests”, IEEE Interna-

tional Symposium on Biomedical Imaging, 2013.

22. Jean-Christophe Michelin, Julien Tierny, Florence Tupin, Clément

Mallet, Nicolas Paparoditis, “Quality Evaluation of 3D City Building

Models with Automatic Error Diagnosis”, Proc. of ISPRS Conference

on SSG, 2013.

23. Emanuele Santos, Julien Tierny, Ayla Khan, Brad Grimm, Lauro

Lins, Juliana Freire, Valerio Pascucci, Claudio Silva, Scott Klasky,

Roselyne Barreto, Norbert Podhorszki, “Enabling Advanced Visualiza-

tion Tools in a Web-Based Simulation Monitoring System”, IEEE Interna-

tional Conference on eScience, 2009.

24. Peer-Timo Bremer, Gunther Weber, Julien Tierny, Valerio Pascucci,

Marcus Day, John Bell, “A Topological Framework for the Interactive

Exploration of Large Scale Turbulent Combustion”, IEEE International

Conference on eScience, 2009.

25. Julien Tierny, Jean-Philippe Vandeborre and Mohamed Daoudi,

"Fast and precise kinematic skeleton extraction of 3D dynamic meshes",

IEEE International Conference on Pattern Recognition, 2008,

26. Julien Tierny, Jean-Philippe Vandeborre and Mohamed Daoudi,

"Reeb chart unfolding based 3D shape signatures", Eurographics 2007

(short papers).

27. Julien Tierny, Jean-Philippe Vandeborre and Mohamed Daoudi,

"Topology driven 3D mesh hierarchical segmentation", IEEE Shape Mod-

eling International 2007 (short papers).

28. Julien Tierny, Jean-Philippe Vandeborre and Mohamed Daoudi,

"3D mesh skeleton extraction using topological and geometrical analyses",

Pacific Graphics 2006.
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29. Julien Tierny, Jean-Philippe Vandeborre and Mohamed Daoudi, "In-

variant high level Reeb graphs of 3D polygonal meshes", IEEE 3DPVT,

2006.

Peer-reviewed book chapters

30. Julien Tierny, David Guenther, and Valerio Pascucci, “Optimal Gen-

eral Simplification of Scalar Fields on Surfaces”, chapter of “Topological

and Statistical Methods for Complex Data”, Springer, 2014 (ISBN: 978-

3-662-44899-1).

31. Stefano Berretti, Mohamed Daoudi, Alberto Del Bimbo, Tarik Filali

Ansary, Pietro Pala, Julien Tierny and Jean-Philippe Vandeborre,

“3D object indexing”, chapter of “3D object processing: compression, in-

dexing and watermarking”, Ed. Wiley, 2008 (ISBN: 978-0-470-06542-6).

Invited conference papers

32. Julien Tierny, Jean-Philippe Vandeborre and Mohamed Daoudi,

"Geometry flavored topological skeletons: applications to shape handling,

understanding and retrieval", Second DELOS Conference, 2007.

33. Mohamed Daoudi, Tarik Filali-Ansary, Julien Tierny and Jean-

Philippe Vandeborre, "3D mesh models: view-based indexing and struc-

tural analysis", First DELOS Conference, 2007, Lecture Notes in Com-

puter Science.

2.1.7 Research grants

Since 2008, my research has been partially funded by the following re-

search grants:

1. 2008-2009: Fulbright fellowship (US Department of State);

2. 2008-2009: Lavoisier fellowship (French Ministry for Foreign Af-

fairs);

3. 2013-2014: “Uncertain TopoVis” project (2012-063D, national fund-

ing, Digiteo grant), principal investigator;

4. 2013-2017: “CrABEx” project (ANR-13-CORD-0013, national fund-

ing, ANR grant), local investigator;
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5. 2015-2018: “AVIDO” project (national funding, BPI grant), local in-

vestigator;

6. 2016-2019: “In-Situ Topological Data Analysis” project (partnership

with Kitware S.A.S.), principal investigator.

I also contributed to the following research projects:

1. 2011-2015: “Car passenger modeling with medical imaging” project

(partnership with Renault);

2. 2013-present: “CalSimLab” project (ANR-11-LABX-0037-01);

3. 2014-present: “Riemannian surface visualization” project (DGA DT-

SCAT-DA-IDF DF1300034MNRBC).

2.1.8 Students

Since my Ph.D. thesis defense, I had the opportunity to advise the follow-

ing students:

Master students In 2014, I was the main advisor for the master intern-

ships (4 months) of Kenny Peou and Chantal Ding and I co-advised in

2015 the internships (6 months) of Matthew Henry, Charles Gueunet and

Guillaume Favelier. Charles and Guillaume will continue to work under

my supervision after their internships as a Ph.D. student and a software

engineer respectively.

Ph.D. students I co-advised Mariem Gargouri’s Ph.D. thesis (defended

in June 2015) in the framework of the project “Car passenger modeling

with medical imaging”. I collaborate with the Ph.D. student Roberto Al-

varez Boto (defense expected in 2016) in the framework of the project “Cal-

SimLab”. I am the main advisor of the Ph.D. thesis of Ana Vintescu (to be

defended in 2017) in the framework of the project “CrABEx” and the main

advisor of the Ph.D. thesis of Charles Gueunet (starting in early 2016). I

also worked in close collaboration with Jean-Marc Thiery at Telecom Paris-

Tech (defense in 2012, now a post-doctoral researcher at TU Delft, Nether-

lands) and Brian Summa at the University of Utah (defense in 2013, now

an assistant professor at Tulane University, USA).

Post-docs I was the main advisor of the post-doctoral researcher David

Guenther (2013-2014, now an engineer with Sirona Dental Systems) in the

framework of the “Uncertain TopoVis” project.
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2.1.9 Service

In addition to my research activity, I served my scientific community in

the following ways:

Keynote speaker and invited talks I was a keynote speaker for the IEEE

Shape Modeling International 2015 conference. I also gave invited talks

in other events (CEA Uncertainty Forum 2014, Franco-Romanian applied

mathematics congress 2014, AC3D Worskshop 2014) and universities (Tu-

lane University, University of Leeds, Max Planck Institut fur Informatik,

Clemson University and other French universities).

Event organizer I was the co-chair of the poster track of the IEEE Large

Data Analysis and Visualization 2014 symposium. I was the organizer of

the French workshop on Visualization in 2012 in Telecom ParisTech (about

80 attendees).

International Program Committees I served on the following interna-

tional program committees:

• EuroVis 2015-2016 (full papers);

• IEEE Shape Modeling International 2015 (full papers);

• TopoInVis 2015 (full papers);

• EuroVis 2013-2014 (short papers);

• EuroGraphics 2012-2013 (short papers).

Reviews In addition to my reviewing service as a program committee

member, I reviewed papers for the following journals and conferences

(around 60 papers overall):

• Journals: IEEE Transactions on Visualization and Computer

Graphics, Computer Graphics Forum, Computer Aided-Design,

Computer-Aided Geometric Design, IEEE Transactions on Image

Processing, International Journal of Computer Vision, Theoretical

Computer Science, Image and Vision Computing;

• Conferences: IEEE VIS (2009, 2012-2015), EuroVis (2009, 2013-2016),

ACM SIGGRAPH (2012-2013, 2015), ACM SIGGRAPH ASIA (2015),

Eurographics (2009-2012, 2015-2016), Pacific Graphics (2011), ACM
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Solid and Physical Modeling (2008), IEEE Shape Modeling Interna-

tional (2008, 2015), High Performance Graphics (2013), TopoInVis

(2013, 2015), IEEE SIBGRAPI (2009), IEEE ICME (2007-2008).

Ph.D. committees I served as a jury member on the Ph.D. committees of

the following students:

• Esma Elghoul (INRIA - Rocquencourt), 2014;

• Maxime Belperin (LIRIS), 2013;

• Rachid El Khoury (LIFL), 2013;

• Bertrand Pellenard (INRIA - Sophia Antipolis), 2012;

• Romain Arcila (LIRIS), 2011.

Fellowship committees I had the opportunity to serve at the Franco-

American Commission as a committee member for the Fulbright fellow-

ship (2011-2012).

2.2 Teaching activity

During my Ph.D. thesis, I was a teaching assistant (“Moniteur”) within

the Computer Science department of Lille 1 University. Ever since, I

continued to teach regularly since I consider teaching as a mandatory

component of research dissemination. Moreover, I like to think that my

teaching contributes to some extent to the development of a visualiza-

tion community in France, to form skilled students both for the industry

and the academia. Overall, I currently teach around 80 hours per year.

All of my teaching material can be found on the following web-page:

http://lip6.fr/Julien.Tierny/teaching.html.

2.2.1 Main classes

Since 2013, I am the head instructor of the scientific visualization class

at ENSTA ParisTech (24 hours, Master-2 level) and at the University of

Versailles (32 hours, Master-1 level). All of the teaching material for

this class (lectures and exercises) is available on a dedicated web-page:

http://lip6.fr/Julien.Tierny/visualizationClass.html. In particular, its on-

line exercises are by far the most visited pages of my website (with more

than 14,000 hits over the last year). I also contribute to the Computer

http://lip6.fr/Julien.Tierny/teaching.html
http://lip6.fr/Julien.Tierny/visualizationClass.html
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Graphics class at Telecom ParisTech and at Sorbonne Universités UPMC

(with visualization and geometry processing lectures). Last year, I was

able to recruit two students following my classes for their research intern-

ship.

Starting in 2016, I should also contribute to the visualization class of

the computer science and applied mathematics program of the engineer

school PolyTech Paris.

2.2.2 Past classes

In 2014, I contributed to the international summer school on scientific

visualization organized by the Institute for Computing and Simulation

(ICS) of Sorbonne Universités UPMC.

From 2008 to 2010, I regularly gave lectures at the University of Utah

in the scientific visualization class (volume rendering and topological

data analyis for undergraduate attendees) and the computational topology

class (simplicial complexes, delaunay complexes and persistent homology

for graduate attendees).

From 2005 to 2008, I gave several lectures and exercise sessions as a

teaching assistant (“Moniteur”) at the Computer Science department of

Lille1 University (64 hours per year).





Notations

X Topological space

∂X Boundary of a topological space

M Manifold

Rd Euclidean space of dimension d

σ, τ d-simplex, face of a d-simplex

v, e, t, T Vertex, edge, triangle and tetrahedron

Lk(σ), St(σ) Link and star of a simplex

Lkd(σ), Std(σ) d-simplices of the link and the star of a simplex

K Simplicial complex

T Triangulation

M Piecewise linear manifold

βi i-th Betti number

χ Euler characteristic

αi ith barycentric coordinates of a point p relatively to a simplex σ

f : T → R Piecewise linear scalar field

∇ f Gradient of a PL scalar field f

Lk−(σ), Lk+(σ) Lower and upper link of σ relatively to f

o(v) Memory position offset of the vertex v

L−(i), L+(i) Sub- and sur-level set of the isovalue i relatively to f

D( f ) Persistence diagram of f

C( f ) Persistence curve of f

R( f ) Reeb graph of f

l(R( f )) Number of loops of R( f )

T ( f ) Contour tree of f

J ( f ), S( f ) Join and split trees of f

MS( f ) Morse-Smale complex of f
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This chapter introduces all the theoretical preliminaries required for the

reading of the rest of the manuscript. First, the input data representa-

tion is formalized. Second, some of the core concepts of Topological Data

Analysis are presented, including critical points, notions of Persistent Ho-

mology, Reeb graphs and Morse-Smale Complexes. Finally, a brief review

of the state-of-the-art algorithms is presented.

For the reader’s convenience, the most important definitions and prop-

erties are highlighted with boxes.

For further readings, I refer the reader to the excellent introduction to

Computational Topology by Edelsbrunner and Harer (EH09).
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3.1 Data representation

In scientific visualization, scalar data is in general defined on an input

geometrical object (hereafter named “Domain”). It is represented by a finite

set of sample values, continuously extended in space to the entirety of

the domain thanks to an interpolant. In the following, I first formalize a

generic domain representation. Next, I formalize a representation of the

scalar data on this object (hereafter termed “Range”).

3.1.1 Domain representation

In the following, I formalize a generic domain representation. This notion

is introduced constructively. At the end of the subsection, I further de-

scribe topological notions relative to this domain representation that will

be used in the remainder of the manuscript.

Preliminary notions

Definition 1 (Topology) A topology on a set X is a collection T of subsets of X having the

following properties:

• The sets ∅ and X are in T;

• The union of any sub-collection of T is in T;

• The intersection of a finite sub-collection of T is in T.

Definition 2 (Topological space) A set X for which a topology T is defined is called a topo-

logical space.

For example, the space of real numbers R is a topological space.

Definition 3 (Open set) A subset A ⊂ X of the topological space X is an open set of X if it

belongs to T.

Definition 4 (Closed set) A subset B ⊂ X of the topological space X is a closed set of X if its

complement X−B is open.

Intuitively, open sets are subsets of topological spaces which do not

contain their boundaries. For example, considering the space of real num-

bers R, (−∞, 0) ∪ (1,+∞) and [0, 1] are complements and respectively

open and closed sets.

Property 1 (Open sets)

• The set ∅ is open;
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Figure 3.1 – Example of 2-manifold: any point of the surface (left, black dot) has an open

neighborhood (textured chart) that is homeomorphic to an open Euclidean 2-ball (that can

be unfolded to the plane, right).

• The union of any number of open sets is open;

• The intersection of a finite number of open sets is open.

These properties follow from the definition of topology.

Definition 5 (Covering) A collection of subsets of a topological space X is a covering of X if

the union of all its elements is equal to X.

Definition 6 (Compact topological space) A topological space X is compact if every open

covering of it contains a finite sub-collection that is also a covering of X.

Definition 7 (Function) A function f : A → B associates each element of the topological

space A with a unique element of the topological space B.

Definition 8 (Injection) A function f : A → B is an injection if for each pair a1, a2 ∈ A

such that a1 6= a2, f (a1) 6= f (a2). f is said to be one-to-one.

Definition 9 (Bijection) A function f : A→ B is a bijection if for each element b ∈ B there

is exactly one element a ∈ A such that f (a) = b. f is said to be bijective. It is

also said to be one-to-one (injective) and onto (surjective).

Definition 10 (Continuous function) A function f : A → B is continuous if for each open

subset C ∈ B, the set f−1(C) is an open subset of A.

Definition 11 (Homeomorphic spaces) Two topological spaces A and B are homeomorphic

if and only if there exists a continuous bijection f : A → B with a continuous

inverse f−1 : B→ A. f is a homeomorphism.

Definition 12
(Manifold) A topological space M is a d-manifold if every element m ∈M has

an open neighborhood N homeomorphic to an open Euclidean d-ball.
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Figure 3.2 – Examples of convex (left) and non-convex (right) 3-manifolds (volumes).

On the left, any two points (green and blue spheres) can be linked by a line segment that

belongs to the volume (white cylinder). This is not the case for the right volume.

An intuitive description of a d-manifold is that of a curved space,

which has locally the structure of an Euclidean space of dimension d,

but which has a more complicated global structure (Euclidean spaces are

therefore special cases of manifolds). Figure 3.1 illustrates this with the

example of a 2-manifold (surface).

Domain formalization

In the following we formally introduce our domain representation as well

as representations for connectivity information.

Definition 13 (Convex set) A set C of an Euclidean space Rn of dimension n is convex if for

any two points x and y of C and all t ∈ [0, 1] the point (1− t)x + ty also belongs

to C.

Intuitively, a convex set is a set such that any two points of the set

can be linked by a line segment that belongs to the set, as illustrated with

3-manifolds (volumes) in Figure 3.2.

Definition 14 (Convex hull) The convex hull of a set points P of an Euclidean space Rn is the

unique minimal convex set containing all points of P .

Definition 15 (Simplex) A d-simplex is the convex hull σ of d + 1 affinely independent points

of an Euclidean space Rn, with 0 ≤ d ≤ n. d is the dimension of σ.

Definition 16 (Vertex) A vertex v is a 0-simplex of R3.

Definition 17 (Edge) An edge e is a 1-simplex of R3.

Definition 18 (Triangle) A triangle t is a 2-simplex of R3.
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Figure 3.3 – Illustrations of 0 (green), 1 (blue), 2 (white) and 3-simplices (transparent),

from left to right, along with their faces.

Definition 19 (Tetrahedron) A tetrahedron T is a 3-simplex of R3.

Definition 20 (Face) A face τ of a d-simplex σ is the simplex defined by a non-empty subset of

the d + 1 points of σ, and is noted τ ≤ σ. We will note τi a face of dimension i.

In summary, a d-simplex is the smallest combinatorial construction

that can represent a neighborhood of a d-dimensional Euclidean space.

As illustrated in Figure 3.3, it is composed of faces, that are themselves

(d− 1), (d− 2), . . . , and 0-simplices.

Definition 21 (Simplicial complex) A simplicial complexK is a finite collection of non-empty

simplices {σi}, such that every face τ of a simplex σi is also in K, and any two

simplices σi and σj intersect in a common face or not at all.

Definition 22 (Star) The star of a simplex σ of a simplicial complex K is the set of simplices

of K that contain σ: St(σ) = {τ ∈ K, σ ≤ τ}. We will note Std(σ) the set of

d-simplices of St(σ).

Definition 23
(Link) The link of σ is the set of faces of the simplices of St(σ) that are disjoint

from σ: Lk(σ) = {τ ≤ Σ, Σ ∈ St(σ), τ ∩ σ = ∅}. We will note Lkd(σ) the set

of d-simplices of Lk(σ).

In other words, the star of a simplex σ is the set of simplices having σ

as a face, as illustrated Figure 3.4 (top). The notion of link is illustrated at

the bottom of Figure 3.4.

Definition 24 (Underlying space) The underlying space of a simplicial complex K is the

union of its simplices |K| = ∪σ∈Kσ.

Definition 25
(Triangulation) The triangulation T of a topological space X is a simplicial

complex K whose underlying space |K| is homeomorphic to X.

The notion of triangulation has been preferred here to other compet-
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Figure 3.4 – Illustrations of stars (green, top) and links (blue, bottom) for 0, 1 and

2-simplices (white, from left to right) of a 3-dimensional simplicial complex.

ing representations for its practical genericity: any mesh representation

(regular grid, unstructured grid, etc.) can be easily converted into a trian-

gulation by subdividing each of its d-cells into valid d-simplices (having

only (d + 1) linearly independent points), as illustrated in Figure 3.5 for

the case of a regular grid. Also, note that for regular grids, the resulting

triangulation can be implicitly encoded (i.e. adjacency relations can be re-

trieved on demand, without storage, thanks to the recurring subdivision

pattern of the regular grid). Moreover, as detailed in the next subsection,

triangulations can be accompanied with well-behaved interpolants, which

facilitate reasoning and computation with scalar data.

As discussed further down this manuscript, for reasoning and robust-

ness purposes, the following, more restrictive, notion is often preferred

over triangulations.

Figure 3.5 – A 3-dimensional regular grid (left) can be easily converted into a trian-

gulation by subdividing each of its voxels independently into 5 tetrahedra (center, right:

exploded view). This subdivision can be implicitly encoded.
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Figure 3.6 – Example of PL 3-manifold (left, right: clipped view).

Definition 26
(Piecewise Linear Manifold) The triangulation of a manifold M is called a

piecewise linear manifold and is notedM.

Therefore, a piecewise linear (PL) manifold is a combinatorial repre-

sentation of a manifold that derives from the notion of triangulation, as il-

lustrated in Figure 3.6. It can be efficiently represented in memory by stor-

ing for each dimension d, the list of d-simplices as well as their stars and

links. In the remainder of this manuscript, we will consider PL-manifolds

as our generic domain representations.

Topological invariants

In the following, I describe a few topological invariants: entities that do

not change under continuous transformations of the domain (variations

in point positions but no variation in connectivity). These notions are

instrumental in Topological Data Analysis.

Definition 27 (Path) A homeomorphism p : (a, b) → C from an open interval (a, b) ⊆ R to a

subset C of a topological space X is called a path on X between p(a) and p(b).

Definition 28 (Connected topological space) A topological space X is connected if for any

two points of X there exists a path between them on X.

Definition 29 (Connected components) The maximally connected subsets of a topological

space X are called its connected components.

Definition 30 (Homotopy) A homotopy between two continuous functions f and g is a

continuous function H : X× [0, 1] → Y from the product of a topological space

X with the closed unit interval to a topological space Y such that for each point

x ∈ X, H(x, 0) = f (x) and H(x, 1) = g(x). If there exists a homotopy between

them, f and g are said to be homotopic.
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Figure 3.7 – Examples of disconnected, connected and simply connected domains (from

left to right).

While homeomorphism deals with the matching between neighbor-

hoods, homotopies additionally require that a continuous transformation

exist between them, by considering neighborhoods as images of functions

(the notion of homotopy is then refined to that of isotopy). Here, the sec-

ond parameter of an homotopy can be seen as time in this continuous

transformation process. For instance, a circle and a knot are homeomor-

phic but are not homotopic since the knot needs to be cut and stitched

back to be turned into a circle, which is not a continuous transformation.

Definition 31
(Simply connected topological space) A topological space X is simply con-

nected if it is connected and if for any two points of X, any two paths between

them on X are homotopic.

As illustrated in Figure 3.7, a domain is not simply connected if for

any two points, any pair of paths between them cannot be continuously

transformed into one another (black paths in Figure 3.7, right).

Definition 32 (Boundary) The boundary of a topological space X, noted ∂X, is the complement

in X of the subspace of X, called the interior of X, composed of all the elements

x ∈ X such that x has an open neighborhood N.

Definition 33 (Boundary component) A boundary component of a topological space X is a

connected component of its boundary ∂X.

Definition 34 (p-chain) A p-chain of a triangulation T of a topological space X is a formal

sum (with modulo 2 coefficients) of p-simplices of T .

Definition 35 (p-cycle) A p-cycle of a triangulation T of a topological space X is a p-chain

with empty boundary.

Definition 36 (Group of p-cycles) The group of p-cycles of a triangulation T of a topological
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Figure 3.8 – Examples of PL 3-manifolds with varying Betti numbers. From left to right:

a 3-ball, a solid torus, a 3-ball with a void. From left to right, (β0, β1, β2) is equal to

(1, 0, 0), (1, 1, 0), and (1, 0, 1)). Generators are displayed in green, while examples of

non-generator p-cycles are displayed in blue.

space X is the group of all p-cycles of T , noted Zp(T ), which forms a sub-group

of all p-chains of T .

Definition 37 (p-boundary) A p-boundary of a triangulation T of a topological space X is the

boundary of a (p + 1)-chain.

Property 2 (p-boundary) A p-boundary is a p-cycle.

Definition 38 (Group of p-boundaries) The group of p-boundaries of a triangulation T of

a topological space X is the group of all p-boundaries of T , noted Bp(T ), which

forms a sub-group of all p-cycles of T .

Definition 39 (Homology group) The pth homology group of a triangulation T of a topo-

logical space X is its pth cycle group modulo its pth boundary group: Hp(T ) =
Zp(T )/Bp(T ).

Intuitively, two p-cycles are said to be equivalent, or homologous, if

they can be continuously transformed into each other (through formal

sums with modulo 2 coefficients) without being collapsible to a point.

Then, one can further group p-cycles into classes of equivalent p-cycles.

Each class can be represented by a unique representative p-cycle that is

called generator (and that is homologous to any other p-cycle of the class),

as illustrated in Figure 3.8 with a green 1-cycle (center) and a green 2-

cycle (right). Enumerating the number of generators of a homology group

enables to introduce intuitive topological invariants called Betti numbers.

Definition 40

(Betti number) The pth Betti number of a triangulation T of a topological space

X is the rank of its pth homology group: βp(T ) = rank(Hp(T )).

In low dimensions, Betti numbers have a very concrete interpretation.

For instance, for PL 3-manifolds, β0 corresponds to the number of con-
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nected components, β1 to the number of handles and β2 to the number of

voids, as illustrated in Figure 3.8 (β3 is equal to 0 for PL 3-manifolds with

boundary, i.e. that can be embedded in R3).

Definition 41
(Euler characteristic) The Euler characteristic of a triangulation T of a topo-

logical space X of dimension d, noted χ(T ), is the alternating sum of its Betti

numbers: χ(T ) = ∑i=d
i=0(−1)iβi(T ).

Property 3 (Euler characteristic) The Euler characteristic of a triangulation T of a topo-

logical space X of dimension d is also equal to the alternating sum of the number

of its i-simplices: χ(T ) = ∑i=d
i=0(−1)i|σi|.

3.1.2 Range representation

In the following, I formalize a range representation based on the previ-

ously introduced domain representation. Additionally, I will introduce a

few related geometrical constructions that will be instrumental to Topo-

logical Data Analysis.

Piecewise linear scalar fields

Definition 42
(Barycentric coordinates) Let p be a point of Rn and σ a d-simplex. Let α0, α1,

. . . , αd be a set of real coefficients such that p = ∑i=d
i=0 αiτ

i
0 (where τi

0 is the ith

zero dimensional face of σ) and such that ∑i=d
i=0 αi = 1. Such coefficients are called

the barycentric coordinates of p relatively to σ.

Property 4 (Barycentric coordinates) The barycentric coordinates of p relative to σ are

unique.

Property 5 (Barycentric coordinates) If and only if there exists an i for which αi /∈ [0, 1],

then p does not belong to σ, otherwise it does.

Definition 43

(Piecewise Linear Scalar Field) Let f̂ be a function that maps the 0-simplices of

a triangulation T to R. Let f : T → R be the function linearly interpolated from

f̂ such that for any point p of a d-simplex σ of T , we have: f (p) = ∑i=d
i=0 αi f̂ (τi

0)

(where τi
0 is the ith zero dimensional face of σ). f is called a piecewise linear

(PL) scalar field.

Piecewise linear scalar fields will be our default representation for

scalar data. Typically, the input data will then be given in the form of

a triangulation with scalar values attached to its vertices ( f̂ ). The linear
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Figure 3.9 – Example of PL scalar field f defined on a PL 3-manifold M. From left to

right: restriction f̂ of f on the 0-simplices of M, f (the color coding denotes the linear

interpolation within each simplex), clipped view of f .

interpolation provided by the barycentric coordinates can be efficiently

computed on demand (on the CPU or the GPU, as illustrated in Figure 3.9)

and has several nice properties that makes it well suited for combinatorial

reasonings.

Property 6 (Gradient of a Piecewise Linear Scalar Field) The gradient ∇ f of a PL scalar field

f : T → R is a curl free vector field that is piecewise constant (constant within

each d-simplex of T ).

This property has several implications that will be discussed in the

following subsections.

Definition 44 (Lower Link) The lower link Lk−(σ) (respectively the upper link Lk+(σ)) of

a d-simplex σ relatively to a PL scalar field f is the subset of the link Lk(σ) such

that each of its zero dimensional faces has a strictly lower (respectively higher) f

value than those of σ.

Given the above definition, it is often useful to disambiguate configura-

tions of equality in f values between vertices (thus equalitiy configurations

in f̂ ). Therefore, f̂ is often slightly perturbed with a mechanism inspired

by simulation of simplicity (EM90) to turn f̂ into an injective function.

This can be achieved by adding to f̂ a second function ĝ that is injective

(the result is then injective as well). Let o(v) denote the position integer

offset of the vertex v in memory. o(v) is injective. Then, to turn f̂ into an

injective function, one needs to add to it εo(v) where ε is an arbitrarily

small real value. As the original simulation of simplicity, this mechanism

can be implemented numerically (by choosing the smallest possible value

for ε depending on the machine precision) or preferably symbolically by

re-implementing the necessary predicates. For instance, to decide if a ver-

tex v0 is lower than a vertex v1, one needs to test f̂ (v0) < f̂ (v1) and, in

case of equality, test o(v0) < o(v1) to disambiguate. In the following, we

will therefore consider that f̂ is always injective in virtue of this mecha-
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Figure 3.10 – Example of level set (isosurface, left) of a PL scalar field defined on a PL

3-manifold. Right: restriction of the isosurface to a 3-simplex.

nism. Therefore, no d-simplex of T collapses to a point of R through f for

any non-zero d.

Related geometrical constructions

Based on our representation for scalar data on geometrical domains, I will

now introduce a few geometrical constructions that will be instrumental

in Topological Data Analysis.

Definition 45 (Sub-level set) The sub-level set L−(i) (respectively the sur-level set L+(i))

of an isovalue i ∈ R relatively to a PL scalar field f :M→ R is the set of points:

{p ∈ M | f (p) ≤ i} (respectively {p ∈ M | f (p) ≥ i}).

Definition 46

(Level set) The level-set f−1(i) of an isovalue i ∈ R relatively to a PL scalar

field f : M → R is the pre-image of i onto M through f : f−1(i) = {p ∈
M | f (p) = i}.

Property 7 (Level set) The level set f−1(i) of a regular isovalue i ∈ R relatively to a PL

scalar field f :M→ R defined on a PL d-manifoldM is a (d− 1)-manifold.

Property 8 (Level set) Let f : T → R be a PL scalar field and σ be a d-simplex of T . For

any isovalue i ∈ f (σ), the restriction of f−1(i) within σ belongs to an Euclidean

subspace of Rd of dimension (d− 1).

This latter property directly follows from the property 6 on the gra-

dient of PL scalar fields, which is piecewise constant (a level set is ev-
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Figure 3.11 – Examples of integral line (left) of a PL scalar field defined on a PL 3-

manifold. Right: restriction of the integral line to a 3-simplex.

erywhere orthogonal to the gradient). It follows that the level sets of PL

scalar fields defined on PL manifolds can be encoded as PL manifolds, as

illustrated with the white PL 2-manifold in Figure 3.10 (right).

Property 9 (Level set) Let f : T → R be a PL scalar field and σ be a d-simplex of T . For any

two isovalues i 6= j belonging to f (σ), the restrictions of f−1(i) and of f−1(j)

within σ are parallel.

This property also follows from the property 6 on the gradient of PL

scalar fields and is illustrated in Figure 3.10 (right, dark gray isosurfaces),

which shows an isosurface restricted to a 3-simplex (i.e. a level set of a

PL scalar field defined on a PL 3-manifold). Such strong properties (pla-

narity and parallelism) enable to derive robust and easy-to-implement al-

gorithms for level set extraction (called “Marching Tetrahedra” for PL 3-

manifolds, and “Marching Triangles” for PL 2-manifolds).

Definition 47 (Contour) Let f−1(i) be the level set of an isovalue i relatively to a PL scalar field

f : T → R. Each connected component of f−1(i) is called a contour.

Definition 48
(Integral line) Let f : M → R be a PL scalar field defined on a PL manifold

M. An integral line is a path p : R→ C ⊂ M such that ∂
∂t p(t) = ∇ f (p(t)).

limt→−∞ p(t) and limt→∞ p(t) are called the origin and the destination of the

integral line respectively.

In other words, an integral line is a path which is everywhere tangen-

tial to the gradient. In virtue of property 6 on the gradient of PL scalar
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fields, it follows that integral lines can be encoded as PL 1-manifolds, as

illustrated with the white PL 1-manifold in Figure 3.11 (right).

3.2 Topological abstractions

Level sets (and especially contours) and integral lines are fundamental ge-

ometrical objects in Scientific Visualization for the segmentation of regions

of interests (burning flames in combustion, interaction pockets in chem-

istry, etc.) or the extraction of filament structures (galaxy backbones in

cosmology, covalent interactions in chemistry, etc.).

Intuitively, the key idea behind Topological Data Analysis is to seg-

ment the data into regions where these geometrical objects are homoge-

neous from a topological perspective, and to summarize these homogene-

ity relationships into a topological abstraction. Such a segmentation strategy

enables to access these features more efficiently and to classify them ac-

cording to application dependent metrics for further processing.

In the following, I introduce such topological abstractions for feature

extraction, segmentation and classification purposes.

3.2.1 Critical points

In the smooth setting, critical points are points of a manifold where the

gradient of a smooth scalar field vanishes. Unfortunately, this notion does

not directly translate into the PL setting since the gradient of a PL scalar

field is piecewise constant. This requires to use an alternate definition,

which interestingly involves topological and combinatorial reasonings.

Morse theory (Mil63) relates the study of the topology of manifolds

to the study of a specific group of smooth scalar fields defined on them

(called Morse functions). One of the key results of Morse theory is the

following property: the Betti numbers of the sub-level sets of a Morse

function only change in the vicinity of a critical point. In other words, the

topology of the sub-level sets only evolves when crossing a critical point.

This observation is at the basis of a formalization of critical points in the

PL setting.

Definition 49
(Critical point) Let f : M→ R be a PL scalar field defined on a PL manifold

M. A vertex v ofM is a regular point if and only if both Lk−(v) and Lk+(v)

are simply connected. Otherwise, v is a critical point of f and f (v) is called a

critical isovalue (as opposed to regular isovalues).
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Figure 3.12 – Scalar field on a terrain (left). A level set is shown in blue, a contour is

shown in white. Vertices can be classified according to the the connectivity of their lower

(blue) and upper (green) links. From left to right: a minimum (a, blue spheres on the

left), a regular point (b), a simple saddle (c, white spheres on the left) and a maximum (d,

green spheres on the left).

Definition 50 (Critical contour) Let f :M→ R be a PL scalar field defined on a PL manifold

M. A contour of f which contains one of its critical points is called a critical

contour.

In virtue of these definitions and the property 6 on their gradient, PL

scalar fields have many nice properties regarding their critical points.

Property 10 (Critical points) Let f : M → R be a PL scalar field defined on a compact

PL manifold M. The set of critical points of f , noted C f , contains only isolated

critical points and its cardinality |C f | is finite.

These properties follow from the fact that the gradient of a PL scalar

field is piecewise constant: f̂ is assumed to be injective, thus any d-simplex

with d 6= 0 is mapped to a non null gradient vector. Therefore, criti-

cal points are isolated and can only occur on vertices. This makes their

number finite for compact PL manifolds. This property is essential for

a combinatorial reasoning on critical points. Also, note that the above

definitions are independent of the dimension ofM.

Definition 51 (Extremum) Let f :M→ R be a PL scalar field defined on a PL manifoldM.

A critical point v is a minimum (respectively a maximum) of f if and only if

Lk−(v) (respectively Lk+(v)) is empty.

Definition 52 (Saddle) Let f : M → R be a PL scalar field defined on a PL manifold M. A

critical point v is a saddle if and only if it is neither a minimum nor a maximum

of f .

Figure 3.12 illustrates the notion of critical points on a toy example.

The evolution in the topology of the level sets can be observed in the right

insets, which illustrate vertex stars (the smallest combinatorial neighbor-

hood of a vertex in a triangulation). For a minimum (respectively a max-

imum) β0( f−1(i)) increases (respectively decreases) by one in the vicinity
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of the extremum. For a regular point, this number does not evolve when

crossing a regular point. When crossing a saddle, the number of con-

nected components of the restriction of f−1(i) to the star of the vertex first

decreases by one exactly at the saddle and then increases by one right

above it.

Critical points are usually classified according to their index. For PL

scalar fields defined on PL 2-manifolds, minima have index 0, saddles

index 1 and maxima index 2. As the dimension of the domain increases,

the number of types of critical points also increases. For PL scalar fields

defined on PL 3-manifolds, minima have index 0, 1-saddles (saddles that

locally merge level sets) have index 1, 2-saddles (saddles that locally split

level sets) have index 2 and maxima index 3. In the following, we will

note Ci
f the set of critical points of f of index i.

Definition 53 (Saddle multiplicity) Let f : M → R be a PL scalar field defined on a PL

manifold M and let v be a saddle of f . Let k be the maximum value between

β0(Lk−(v)) and β0(Lk+(v)). The multiplicity of a saddle is equal to (k− 1).

A saddle of multiplicity 1 is called a simple saddle. It is called a multi-saddle

otherwise, or (k− 1)-fold saddle, or alternatively a degenerate critical point.

Definition 54
(PL Morse scalar field) Let f : M → R be a PL scalar field defined on a PL

manifoldM. f is a PL Morse scalar field if and only if (i) all its critical points

have distinct f values and (ii) f has no degenerate critical point.

In practice, any PL scalar field can be easily perturbed into a PL Morse

scalar field. The first condition can be easily satisfied by forcing f̂ to be

injective as described in the previous subsection. The second condition

can be satisfied by a process called multi-saddle unfolding (EH09), that

locally re-triangulates the star of a (k− 1)-fold saddle into (k− 1) simple

saddles.

Interestingly, PL Morse scalar fields inherit from most of the properties

of their smooth counter-parts. In particular, the Morse-Euler relation, as

first shown by Banchoff (Ban70), still holds for PL Morse scalar fields.

Property 11
(Morse-Euler relation) Let f : M → R be a PL Morse scalar field defined on

a closed PL manifoldM of dimension d. Then the Morse-Euler relation holds:

χ(M) = ∑i=d
i=0(−1)i|Ci

f |

This property nicely summarizes the relation between the critical
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Figure 3.13 – Minima (blue) and maxima (green) of the orthogonal curl component of a

flow simulation of the von Kármán street (flow turbulence behind an obstacle, here at the

left of the domain). Right: persistence curve of the field. Selecting extrema involved in

pairs more persistent than an increasing threshold (vertical lines, right) yields a hierarchy

of critical point sets (left). Here, the light green vertical line (right) corresponds to the

middle level (left) while the dark green line (right) corresponds to the bottom level (left).

In practice, a flat plateau in the persistence curve (right) often indicates a separation

between noise and features.

points of a PL Morse scalar field and the topology of its domain. More-

over, it also illustrates the global consistency of the local critical point

classification definition (definition 49).

In practice, critical points often directly translate into points of interest

application wise. For instance, in 2D vector fields obtained in computa-

tional fluid dynamics, extrema of the curl of the field indicate the locations

of vortices, a high-level notion that has important implications in the effi-

ciency evaluation of a flow (Figure 3.13, bottom).

3.2.2 Notions of persistent homology

As described in the previous subsection, critical points of PL scalar fields

can be extracted with a robust, localized yet globally consistent, combina-

torial and inexpensive classification (definition 49). However, in practice,

this classification strategy will identify, among others, critical points corre-

sponding to slight function undulations coming from the noise in the data

generation process (acquisition noise, numerical noise in simulations), as

illustrated in Figure 3.13 (top). Therefore, to make critical point extrac-

tion reliable and useful in practice, one needs to derive a mechanism to

further classify critical points into noise or signal, given some application

dependent metric. This is the purpose of Persistent Homology.

Definition 55 (Filtration) Let f : K → R be an injective scalar field defined on a simplicial

complex K such that f (τ) < f (σ) for each face τ of each simplex σ. Let n be
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Figure 3.14 – Sub-complexes induced by the filtration of a PL scalar field defined on a

PL 3-manifold (dark blue: L−(i), light blue: L−(j)). From left to right: β0(L−(i)) = 3,

β0(L−(j)) = 4, β0(L−(i, j)) = 2.

the number of simplices of K and let L−(i) be the sub-level set of f by the ith

value in the sorted set of simplex values. The nested sequence of subcomplexes

L−(0) ⊂ L−(1) ⊂ · · · ⊂ L−(n− 1) = K is called the filtration of f .

The general notion of filtration is preferred here to the more specific

notion of lower star filtration (specifically adapted to PL scalar fields) as

this general introduction will be useful in the next subsections.

Definition 56 (Homomorphism) A homomorphism is a map between groups that commutes

with the group operation.

For instance, the group operation for the group of p-chains is the for-

mal sum of p-simplices (see definition 34).

The filtration of a scalar field f induces a sequence of homomorphisms

between the homology groups of the subcomplexes of K:

Hp(L−(0))→ Hp(L−(1))→ · · · → Hp(L−(n− 1)) = Hp(K) (3.1)

Definition 57 (Persistent homology group) The pth persistent homology groups are the

images of the homomorphisms induced by inclusion, noted Hi,j
p , for 0 ≤ i ≤ j ≤

n− 1. The corresponding pth persistent Betti numbers are the ranks of these

groups, β
i,j
p = rank(Hi,j

p ).

Figure 3.14 provides a visual interpretation of the notion of 0th per-

sistent Betti number, which characterizes connected components. Given

two nested sub-complexes L−(i) and L−(j), with i < j, the sub-complex

induced by inclusion with regard to the 0th homology group is noted

L−(i, j): it is defined by the connected components of L−(j) which have
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non empty intersections with these of L−(i) (which includes them). The

0th homology group of L−(i, j) is composed of the classes of the 0th ho-

mology group that already existed at the ith isovalue and which still exist

at the jth isovalue.

In this example, only 2 of the 4 connected components of L−(j) in-

clude connected components of L−(i). Therefore, among the 3 connected

components of L−(i), only 2 of them are persistent in the interval [i, j].

Therefore, persistent homology provides a mechanism to characterize

the importance of topological features (here connected components) with

regard to a specific measure (here a PL scalar field), at multiple scales

(here the interval [i, j]). This interpretation can be generalized to other

topological features (for PL 3-manifolds cycles and voids) by extending it

to other Betti numbers.

The previous example illustrated the case where a class of the 0th ho-

mology group (representing a connected component) disappeared in be-

tween the ith and jth isovalues: β0(L−(i)) = 3, β0(L−(i, j)) = 2. One

can further track the precise isovalue where classes appear, disappear or

merge with others. Such events correspond to a change in the Betti num-

bers of the sub-level set of the scalar field. As discussed in the previous

subsection, these changes occur at critical points. Therefore, the notions of

birth and death of classes of persistent homology groups can be associated

with pairs of critical points of the input scalar field, and the absolute value

of their f value difference is called the persistence of the pair.

In particular, the merge of two classes represent a death event. In such

a case, the least persistent class (the youngest of the two) is chosen as the

dying class. This choice is often called the Elder’s rule (EH09). Once this

is established, one can pair without ambiguity all the critical points of a

scalar field. Note that this observation could already be foreseen with the

Morse-Euler relation. For instance, the removal of an index 2 critical point

(a maximum) of a PL Morse scalar field defined a PL 2-manifold implies

the removal of a paired index 1 critical point (a saddle) in order to keep

the Euler characteristic constant (property 11).

Therefore, it is possible to enumerate all the classes of all pth homol-

ogy group by enumerating the critical point pairs identified with the above

strategy. This list of critical point pairs can be concisely encoded with a

topological abstraction called the Persistence Diagram (Figure 3.15), noted

D( f ). This diagram is a one-dimensional simplicial complex that embeds

each pair in R2 by using its birth value as a first component and its birth

and death values as second components. The persistence diagram comes
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Figure 3.15 – Critical points of a PL scalar field f defined on a PL 3-manifold (left)

and its persistence diagram D( f ) (right). In the diagram, each pair of critical points is

represented by a white bar and its persistence is given by the height of the bar.

with several interesting properties. In particular, the stability theorem

(CSEH05) states that given two PL scalar fields f and g defined on a com-

mon domain, the bottleneck distance between their persistence diagrams

is bounded by the difference between the two functions with regard to

the infinity norm: dB(D( f ),D(g)) ≤ || f − g||∞. Intuitively, this means

that given a slight perturbation of a scalar field, its persistence diagram

will only slightly vary. This stability result further motivates the usage of

the persistence diagram as a stable topological abstraction of a scalar field

(used for instance in function comparison).

In practice however, an alternate representation is often preferred to

isolate critical point pairs corresponding to important features from these

corresponding to noise. The Persistence Curve, noted C( f ), is a diagram

that plots the number of critical point pairs with persistence higher than a

threshold ε, as a function of this threshold ε. When displayed in logarith-

mic scale, such curves often exhibit a flat plateau separating features with

very low persistence from these of higher persistence (see Figure 3.13). In

practice, such a plateau is instrumental to manually identify a relevant

persistence threshold for the user-driven selection of the most important

critical points of the field, as illustrated in Figure 3.13 (bottom). Also, note
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Figure 3.16 – PL Morse scalar field defined on a PL 2-manifold (left and center) and its

Reeb graph (right).

that extracting the critical point pairs more persistent than a threshold ε

for increasing values of ε yields a hierarchy of sets of critical points, that

enables to interactively explore them at multiple scales of importance, as

showcased throughout Figure 3.13.

3.2.3 Reeb graph

The persistence curve and the persistence diagrams provide concise rep-

resentations of the critical point pairs of a PL scalar field, along with their

persistence. However, they do not provide any information related to the

adjacency relations of these pairs on the domain. This is the purpose of

more advanced topological abstractions, such as the Reeb graph (Ree46).

Definition 58
(Reeb graph) Let f :M→ R be a PL Morse scalar field defined on a compact PL

manifoldM. Let f−1( f (p))p be the contour of f containing the point p ∈ M.

The Reeb graph R( f ) is a one-dimensional simplicial complex defined as the

quotient space onM×R by the equivalence relation (p1, f (p1)) ∼ (p2, f (p2)),

which holds if:  f (p1) = f (p2)

p2 ∈
(

f−1( f (p1))
)

p1

The Reeb graph can also be defined alternatively as the contour retract

of M under f (a continuous map that retracts each contour to a single
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point, such that its image is a subset of its domain and its restriction to

its image is the identity). Note that f can be decomposed into f = ψ ◦ φ,

where φ : M → R( f ) is the contour retraction and ψ : R( f ) → R is a

continuous function that maps points of R( f ) to their f value in R.

Intuitively, as suggested by the previous definition, the Reeb graph

continuously contracts each connected component of level sets to a point,

yielding a one-dimensional simplicial complex that can be optionally em-

bedded in R3, as illustrated in Figure 3.16.

Since the Betti numbers of the level sets change at critical points (in

particular β0 may change), the Reeb graph has a tight connection with

the critical points of the function. In particular, branching occurs when

β0( f−1(i)) changes as i evolves, as further detailed below:

Property 12 (Images through φ (Ree46)) Let R( f ) be the Reeb graph of a PL Morse scalar

field f = ψ ◦ φ defined on a PL d-manifold. Let the valence of a 0-simplex

v ∈ R( f ) be the number of 1-simplices in its star St(v).

• All regular points of f map through φ to a point in the interior of a 1-

simplex of R( f ). The inverse is true.

• All critical points of index 0 or d (all extrema of f ) map through φ to

0-simplices of R( f ) of valence 1. The inverse is true.

• If d = 2, all critical points of index 1 (all saddles of f ) map through φ to

0-simplices of R( f ) of valence 2, 3 or 4. The inverse is true.

• If d ≥ 3, all critical points of index 1 or (d− 1) (subsets of saddles of f )

map through φ to 0-simplices of R( f ) of valence 2 or 3. The inverse is not

necessarily true.

• If d > 3, all critical points of index different from 0, 1, (d− 1) or d map

through φ to 0-simplices ofR( f ) of valence 2. The inverse is not necessarily

true.

The original description of the Reeb graph (Ree46) (including the above

properties) implies that all critical points of f map to 0-simplices of R( f ).

In more contemporary descriptions, two 1-simplices sharing a valence-2

0-simplex as a face are considered to form only one 1-simplex. Therefore,

in the contemporary vision of the Reeb graph, extrema map to valence-1

vertices while only the saddles where β0( f−1(i)) evolves map to vertices

of higher valence. In particular, saddles where β0( f−1(i)) decreases (re-

spectively increases) are called join (respectively split) saddles. For PL
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3-manifolds, join (respectively split) saddles have index 1 (respectively 2).

In this vision, not all 1 and 2-saddles map to vertices of the Reeb graph.

Since the Reeb graph has a tight connection with the critical points of

its scalar field, some of the properties of PL Morse scalar fields translate

in the Reeb graph setting.

Definition 59 (Loops in a Reeb graph) Let R( f ) be the Reeb graph of a PL Morse scalar field

f defined on a PL d-manifold M. Each independent cycle of R( f ) is called a

loop. The number of loops of a Reeb graph is noted l(R( f )).

The two saddles of each loop with the highest and lowest ψ values are

usually called loop saddles.

Property 13 (Loops in a Reeb graph) Let R( f ) be the Reeb graph of a PL Morse scalar field

f defined on a compact PL d-manifoldM. l(R( f )) is bounded by β1(M):

l(R( f )) ≤ β1(M)

As discussed by Cole-McLaughlin et al. (CMEH∗03), this property

follows from the fact that the construction of the Reeb graph can lead to

the removal of 1-cycles of M, but not to the creation of new ones. In the

case of PL 2-manifolds, tighter bounds have be shown (CMEH∗03).

Property 14 (Loops in a Reeb graph on PL 2-manifolds) Let R( f ) be the Reeb graph of a

PL Morse scalar field f defined on a PL 2-manifoldM. Let b(M) be the number

of connected components of M and g(M) its genus. The number of loops of

R( f ) can be described as follows:

• IfM is orientable (admits a non-null and continuous normal vector field):

– if b(M) = 0, then l(R( f )) = g(M);

– otherwise g(M) ≤ l(R( f )) ≤ 2g(M) + b(M)− 1

• otherwise,

– if b(M) = 0, then 0 ≤ l(R( f )) ≤ g(M)/2

– otherwise 0 ≤ l(R( f )) ≤ g(M) + b(M)− 1

Figure 3.16 illustrates this property for a closed and orientable 2-

manifold of genus 2 (here χ(M) = 2− 2g(M)− b(M)) and a Reeb graph

having consequently two loops.

It follows from property 13 that the Reeb graph of a PL Morse

scalar field defined on a simply-connected PL d-manifold M is loop free

(β1(M) = 0). In this specific case, the Reeb graph is usually called a Con-

tour tree and is noted T ( f ). Variants of the Reeb graph, called the Join
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Figure 3.17 – Hierarchy of Reeb graphs obtained by repeated persistence-driven removal

of their 1-simplices (top) and hierarchy of data segmentations (bottom) obtained by con-

sidering the pre-image by φ of each 1-simplex of the Reeb graphs (matching colors).

(respectively Split) trees are defined similarly by contracting connected

components of sub (respectively sur) level sets to points (instead of level

sets) and are noted J ( f ) (respectively S( f )). Note that the join (respec-

tively split) tree of a PL Morse scalar field admitting only one maximum

(respectively minimum) is equal to its contour tree.

Since the Reeb graph is a one-dimensional simplicial complex, a filtra-

tion of ψ : R( f ) → R can be considered and therefore persistent homol-

ogy concepts (previous subsection) readily apply to the Reeb graph with-

out specialization. In particular, one can directly read the (0, 1) critical

point pairs of f (minima and join saddles) from the join tree by removing

its 1-simplices attached to a minimum, one by one in order of their persis-

tence, as illustrated in Figure 3.17 (top). A similar strategy applied to the

split tree enumerates all (d− 1, d) critical point pairs ((d− 1)-saddles and

maxima). The time-efficient enumeration of these types of critical point

pairs is one of the primary applications of the Reeb graph in practice.

Note that simplifying in such a way the Reeb graph, similarly to the crit-

ical points in the previous subsection, yields a hierarchy of Reeb graphs

(for each of which a corresponding, simplified, PL Morse scalar field is

guaranteed to exist), that enables to interactively explore it at multiple

scales of importance, as showcased throughout Figure 3.17 (top).

Finally, note that the pre-image by φ of R( f ) induces a complete par-

tition ofM. In particular, the pre-image of a 1-simplex σ ∈ R( f ) is guar-

anteed by construction to be connected (φ−1 is implemented in practice by
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marking during the construction of R( f ) each vertex with the identifier

of the 1-simplex where it maps to). This latter property is instrumental in

various tasks in scientific visualization, including the efficient indexing of

contours (for fast level set extraction) or the automatic and interactive data

segmentation into regions of interest (especially when feature boundaries

coincide with level sets). This latter capability of the Reeb graph can be

nicely combined with persistent homology concepts, yielding hierarchies

of data segmentations, as illustrated in Figure 3.17 (bottom).

3.2.4 Morse-Smale complex

As discussed in the previous subsection, in the modern interpretation of

the Reeb graph, not all critical points are captured as 0-simplices. There-

fore, the Reeb graph only describes the adjacency relations of a sub-set

of critical point pairs. To capture such exhaustive adjacency relations, one

needs to consider another topological abstractions, called the Morse-Smale

complex, that is constructed by considering equivalence classes on integral

lines instead of contours (see (Gyu08) for further details).

Property 15 (Integral lines) Let f : M → R be a PL Morse scalar field defined on a closed

PL d-manifoldM. Then, the following properties hold:

• Two integral lines are either disjoint or the same;

• Integral lines cover all ofM;

• The origin and the destination of an integral line are critical points of f .

The latter property is particularly interesting. It means that an integral

line can be characterized by its extremities, which are guaranteed to be

critical points of f . Then, one can introduce an equivalence relation that

holds if two integral lines share the same extremities. This is the key idea

behind the Morse-Smale complex.

Definition 60 (Ascending manifold) Let f : M → R be a PL Morse scalar field defined on

a PL d-manifold M. The ascending (respectively descending) manifold of a

critical point p of f is the set of points belonging to integral lines whose origin

(respectively destination) is p.

Property 16 (Ascending manifolds) Let f : M → R be a PL Morse scalar field defined

on a PL d-manifold M. Let p be an index-i critical point of f . The ascending

(respectively descending) manifold of p is an open set ofM of dimension (d− i)

(respectively i).
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Figure 3.18 – Ascending (left) and descending (center) manifolds and Morse-Smale com-

plex (right) of a PL Morse scalar field f defined on a PL 2-manifold. Image taken from

(Gyu08).

Figure 3.18 illustrates these properties with a PL Morse scalar field

defined on a PL 2-manifold M. In particular, the ascending manifold

of a minimum is a subset of M of dimension 2 (shown in orange, left).

Similarly, the descending manifold of a maximum is also a subset of M
of dimension 2 (show in green, center). For PL 2-manifolds, in both cases,

ascending and descending manifolds of saddles have dimension 1 (white

integral lines in both images).

Definition 61 (Morse complex) Let f : M → R be a PL Morse scalar field defined on a PL

d-manifoldM. The complex formed by all descending manifolds of f is called the

Morse complex.

Given this definition, the complex of all ascending manifolds shown

on the left of Figure 3.18 is the Morse complex of − f , while the complex

of all descending manifolds shown in the center is that of f .

Definition 62 (Morse-Smale function) Let f :M→ R be a PL Morse scalar field defined on a

PL d-manifoldM. f is a Morse-Smale function if the ascending and descending

manifolds only intersect transversally.

Intuitively, the transversal intersection condition implies that ascend-

ing and descending manifolds are not parallel at their intersection (this

condition is enforced in practice through local remeshing). This implies

that when these intersect exactly at one point, such a point is critical. This

also implies that given an integral line, the index of its origin is smaller

than that of its destination.

Definition 63 (Morse-Smale complex) Let f : M→ R be a Morse-Smale scalar field defined

on a PL d-manifoldM. The complex formed by the intersection of the Morse com-

plex of f and that of − f is called the Morse-Smale complex and notedMS( f ).

Figure 3.18 (right) illustrates such an intersection. As shown with the

red region, all integral lines (black curves) of a given cell of the complex

(irrespectively of its dimension) share the same origin and destination.
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Note that one can derive a simplicial decomposition of the Morse-Smale

complex by subdividing each d-dimensional cell into valid d-simplices.

By construction, all the critical points of f will therefore map to distinct

0-simplices of such a decomposition, since the Morse-Smale complex cap-

tures all ascending and descending manifolds (and therefore all critical

points). Then, as for the Reeb graph (previous subsection), persistent ho-

mology concepts also readily apply to the simplicial decomposition of

the Morse-Smale complex and simplifying it for increasing values of per-

sistence also yields a hierarchy that enables to interactively explore the

Morse-Smale complex at multiple scales of importance.

Finally, by construction, the Morse-Smale complex provides a partition

of the domain that is instrumental in scientific visualization, especially

when features or their boundaries coincide with the gradient. Alike the

Reeb graph, this segmentation capability can be nicely combined with

persistent homology concepts, yielding hierarchies of data segmentations,

as detailed in the following subsection.

3.3 Algorithms and applications

In this section, I briefly discuss the state-of-the art algorithms for comput-

ing the topological abstractions described above, and I also briefly intro-

duce some of their applications.

Persistent homology

Critical points of PL scalar fields are usually extracted with a simple, ro-

bust, localized yet globally consistent, and easily parallelizable algorithm

that directly implements the definitions presented in Section 3.2.1, and

which derive from a seminal paper by Banchoff (Ban70).

Critical point pair extraction as well as their persistence evaluation

(Section 3.2.2) are usually implemented through sparse matrix reduction

(ELZ02) with an algorithm with O(n3) worst case time complexity (where

n is the number of simplices). Note however, that for the purpose of fea-

ture selection, only extrema-saddle pairs seem to have a practical interest

and these can be computed more efficiently with the Reeb graph as de-

scribed previously.

Persistence diagrams (which encode all critical point pairs along with

their persistence) have been widely used for the purpose of function com-

parison, especially for high-dimensional domains where more advanced
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topological abstractions are more difficult to compute and simplify (see

for instance (Ghr07), (CCSG∗09) and (RL15)).

Cohen-Steiner et al. (CSEH05) showed that the bottleneck distance be-

tween the persistence diagrams of two PL scalar fields f and g computed

on a common domain was bounded by the distance between the two func-

tions with regard to the infinity norm (|| f − g||∞). This result raises the

reciprocal question: given a persistence diagram D( f ) where all pairs less per-

sistent than a threshold ε have been removed (noted D(g)), can we compute a

function g sufficiently close from f that admits D(g) as persistence diagram?

This question has major practical implications since the time complexity

of the algorithms for the construction or processing of topological abstrac-

tions is often dictated by the number of critical points in the input scalar

field. Often in practice, it is possible to easily discriminate critical points

that are not relevant application-wise. Therefore, there exists an applica-

tive interest for an efficient pre-processing of an input scalar field, that

would minimally perturb it to remove a given set of critical points. This

question has first been addressed in the case of PL scalar fields defined on

PL 2-manifolds by Edelsbrunner et al. (EMP06), who showed that such a

function g existed and that its difference to the input was bounded by ε:

|| f − g||∞ ≤ ε. These authors also provided an algorithm to compute it.

However this algorithm is complicated and difficult to implement. More-

over, as persistence pairs are processed in order of their highest extremity,

the same vertices are swept several times when canceable persistence pairs

are nested. Attali et al. (AGH∗09) and Bauer et al. (BLW12) presented in-

dependently a similar approach to this problem for filtrations and Discrete

Morse functions. However, converting the output of these algorithms to

PL scalar fields (which is the standard scalar field representation for many

applications) requires an important subdivision of the domain. Also, these

approaches only deal with closed surfaces. We introduced in 2012 a gen-

eral algorithm (TP12) for the topological simplification of PL scalar fields

on closed or open PL 2-manifolds, capable of removing arbitrary critical

point pairs (not necessarily the least persistent), which enables the us-

age of application-dependent metrics for feature selection. Thanks to its

speed, ease of implementation, robustness and generality, we consider this

algorithm as the reference for the problem of topological simplification of

scalar data on surfaces.

A survey on the concepts of Persistent homology and their applications

can be found in (EH08).
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Reeb graph

Reeb graphs have been introduced in Computer Science independently by

Boyell and Ruston (BR63) (for simply connected surfaces) and by Shina-

gawa et al. (SKK91).

Efficient algorithms for their computation have first been investigated

in the simpler cases of simply connected domains (for which the Reeb

graph is called the contour tree). Time-efficient algorithms have first been

introduced for 2D domains (vKvOB∗97), then 3D domains (TV98) and

last for domains of arbitrary dimension, with an algorithm (CSA00) with

optimal time complexity: O(|σ0|log(|σ0|) + (∑i=1
i=0 |σi|)α(∑i=1

i=0 |σi|)), where

|σi| is the number of i-simplices in the domain and α() is an extremely

slowly growing function (i.e. the inverse of the Ackermann function).

In particular, the latter algorithm is considered by the community as the

reference for the problem of contour tree computation thanks to its op-

timal time complexity, its ease of implementation, its robustness, and its

practical performances. An open-source implementation is also available

(Dil07). This algorithm first computes the join and split trees by tracking

the merge events of a union-find data-structure, by processing the ver-

tices in ascending (respectively descending) order. Last, the two trees are

combined to form the contour tree in a linear pass.

Regarding more general domains, an algorithm (CMEH∗03) has been

introduced for PL scalar fields defined on PL 2-manifolds, with optimal

time complexity: O(|σ1|log(|σ1|). A more recent, non-optimal algorithm

(PSF08) would be recommend instead however, due to its ease of imple-

mentation and acceptable performances in practice. This algorithm explic-

itly constructs the partition induced by the pre-image of φ to retrieve the

1-simplices of R( f ), by computing the critical contours of all saddles of f

as boundaries. This makes the algorithm output-sensitive but leads to a

worst-case complexity of O(|σ0| × |σ2|).
Regarding higher dimensional (non simply-connected) domains, sev-

eral attempts have been proposed, especially with the more practical

target of PL 3-manifolds in mind. However, many properties of the 2-

dimensional domains exploited by the above algorithms do not hold for

3-dimensional domains, making the problem more challenging. Pascucci

et al. (PSBM07) introduced the first algorithm for the computation of the

Reeb graph on domains of arbitrary dimension. Its streaming nature how-

ever, while appealing in specific applications, makes it implementation

difficult. An open-source implementation, which I wrote in 2009 based
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Figure 3.19 – Topological simplification of isosurfaces (white surface, middle). The 1-

simplices of R( f ) that are less persistent than an increasing threshold (transparent, from

left to right) are not considered for contour seed extraction, yielding a progressive removal

of the least prominent contours from the isosurface.

on Giorgio Scorzelli’s original implementation, is available in the official

release of the open-source library the Visualization ToolKit (Tie09). Do-

raiswamy and Natarajan (DN08) extended the quadratic complexity al-

gorithm by Patane et al (PSF08) from PL 2-manifolds to PL 3-manifolds.

We introduced the first practical algorithm (TGSP09) (further described in

Chapter 4) for the efficient computation of the Reeb graph of PL scalar

fields defined on PL 3-manifolds in 2009. Thanks to its speed, it enabled

in practice to transfer all of the contour tree based interactive applications

to more general non-simply connected domains. We considered this al-

gorithm as the reference for the problem of Reeb graph computation on

PL 3-manifolds, until a dimension-independent, optimal time complexity

(O((∑i=2
i=0 |σi|)log(∑i=2

i=0 |σi|))) algorithm was introduced three years later

(Par12).

The contour tree and the Reeb graph have been massively applied in

scientific visualization, in particular because of the property that the pre-

image by φ of a 1-simplex σ ∈ R( f ) is guaranteed by construction to

be connected. This enables for instance to extract an optimal number of

vertex seeds for optimal time level set extraction: each vertex seed initi-

ates the construction of a contour by breadth-first search traversal of the

domain (limiting the traversal to the exact set of simplices projecting on

the queried isovalue). This seed extraction process requires to store each

1-simplex of R( f ) in a balanced interval tree (CLRS09). At query time,

given an isovalue i, all 1-simplices of R( f ) projecting on i can be effi-

ciently retrieved in O(|σ1|log(|σ1|)) steps, where |σ1| is here the number

of 1-simplices in R( f ). Further, given a 1-simplex σ ∈ R( f ) that projects
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on i, a seed vertex can be efficiently extracted if the vertices of the domain

projecting to σ through φ (let |σ′0| be their number) are stored in a bal-

anced search tree in O(|σ′0|log(|σ′0|)) steps. This mechanism can be nicely

combined with persistent homology concepts to interactively simplify iso-

contours, as illustrated in Figure 3.19, by only considering the 1-simplices

of R( f ) that are more persistent than a threshold ε. Variants of this strat-

egy have been presented in the case of the contour tree by van Kreveld

et al. (vKvOB∗97) and Carr et al. (CSvdP04). In particular, the latter

approach introduced, as an alternative to persistence, several geometri-

cal measures enabling to filter the 1-simplices of T ( f ) according to more

application-relevant metrics, which reveals to be of major importance in

practice.

The partitioning capabilities of the Reeb graph have also been instru-

mental in scientific visualization for data segmentation tasks, especially in

cases where the boundaries of regions of interest coincide with level sets.

In that context, the Reeb graph enables (with the fast isosurface extrac-

tion algorithm presented above) to rapidly extract and distinguish each of

these boundaries, at multiple scales of importance when combined with

persistent homology mechanisms. Chapter 6 discusses two applications

of these capabilities to combustion (BWT∗11) and chemistry (GABCG∗14).

These segmentation capabilities also serve as the basis of more advanced

techniques, for the tracking of features over time (SB06), for the design of

transfer functions in volume rendering (WDC∗07) or the similarity estima-

tion between data features (TN14).

Apart from scientific visualization, the Reeb graph has also been used

as a core data-structure in computer graphics, as discussed in (BGSF08,

Tie08).

Morse-Smale complex

The computation of Morse-Smale complexes was first investigated in the

case of PL 2-manifolds. An initial algorithm was introduced by Edels-

brunner et al. (EHZ03). This algorithm constructs for each saddle of f

the integral lines originating and terminating at the saddle, yielding the

set of ascending and descending 1-manifolds. Ascending and descend-

ing 2-manifolds are then retrieved through breadth-first search, by grow-

ing 2-dimensional regions until ascending or descending 1-manifolds are

attained. Further, the authors apply persistent homology concepts to re-

move the least persistent critical point pairs and describe a mechanism
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to update the Morse-Smale complex accordingly (by removing ascending

and descending 1-manifolds attached to removed critical points, merg-

ing the adjacent 2-manifolds and re-routing their 1-manifold boundaries).

Since the number of saddles of f can be proportional to the number of ver-

tices in the domain and since the integral lines can intersect an number of

triangles which is proportional to that of the domain, the construction al-

gorithm has a worst case time complexity of O(|σ0| × |σ2|). This algorithm

was latter improved and applied for the first time to scientific visualization

by Bremer et al. (BEHP03).

The problem of computing the Morse-Smale complex in higher dimen-

sions is far more challenging. First, as the dimension increases, new types

of critical points appear (of increasing index), which translates into the

apparition of ascending and descending manifolds of higher and higher

dimensions. The construction of each of these types of manifolds im-

plies a quadratic term in the runtime complexity. Second, degenerate

cases become more challenging to resolve. This is in particular the case

of the resolution of the degenerate critical points and the enforcement of

the transversal intersection condition. A complicated algorithm has been

proposed for PL scalar fields defined on PL 3-manifolds (EHNP03) but

seems highly challenging to implement and no implementation has been

reported.

Recently, efficient algorithms have been introduced by walking around

the degeneracies of the PL setting and considering a competing formalism,

Discrete Morse Theory (For01), which comes with many nice combinato-

rial properties. In this setting for example, critical points occur on sim-

plices of arbitrary dimension and the index of a critical point coincides

with the dimension of its simplex. Moreover, degenerate critical points

cannot occur by construction. This formalism considers as Discrete Morse

Functions scalar fields that map each simplex of the domain to a single

scalar value, in such a way that for each simplex σ, there exists at most

one simplex for which σ is a face with lower function value, and that there

exists at most one simplex that is a face of σ with a higher function value.

Then a simplex is critical if no such face and no such coface exist. This for-

malism additionally introduces the notion of V-path, used as an analog to

PL integral lines, which is a sequence of pairs of simplices of alternating

dimensions (d and (d + 1)) with descending function values. Then, the

notion of discrete gradient can be introduced as a pairing of simplices that

induces V-paths that are all monotonic and loop-free (Figure 3.20). Given a

discrete gradient, critical points correspond to simplices that belong to no
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Figure 3.20 – Discrete gradient field of a simple synthetic function. Blue arrows illustrate

the pairing of 0-cells (vertices) with 1-cells (edges) while red arrows show the pairing of 1-

cells (edges) with 2-cells (faces). Critical i-cells are shown as blue (d = 0), yellow (d = 1),

and red (d = 2) squares. The discrete gradient field defines the MS complex: combinatorial

separatrices (blue and red lines) connecting the critical cells.

simplex pair. As mentioned before, degenerate critical points cannot oc-

cur by construction in this setting. Moreover, ascending and descending

manifolds are guaranteed to intersect transversally (Gyu08). Therefore,

by construction, this formalism avoids all the degeneracies found in the

PL setting which make Morse-Smale complex computation challenging.

Thus, several efficient algorithms have been proposed for the computation

of a discrete gradient from a PL scalar field as well as the construction and

simplification of the Morse-Smale complex (GBHP08, RWS11), including

a shared-memory parallel algorithm (SN12) whose implementation has

been released in open-source (Shi12). Note that this discrete formalism

has been described here in the context of PL manifolds for consistency,

but it readily applies to arbitrary cellular complexes. This is another factor

that motivates its popularity, as regular grids no longer need to undergo

simplicial subdivisions in this framework.

The combinatorial consistency of the Discrete Morse Theory setting

comes however with a price in terms of geometrical accuracy: in particu-

lar, locally, V-paths have to follow simplices of the domain and therefore

do not match the integral lines induced by any interpolant. Gyulassy

et al. (GBP12) addressed this issue by introducing a novel, probabilistic,

discrete gradient construction algorithm whose V-paths are shown to con-

verge to integral lines as the domain sampling increases. We recently im-

proved this approach to avoid the need for domain re-sampling by intro-

ducing a discrete gradient construction algorithm that conforms to input
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constraints (GGL∗14), as further discussed in Chapter 5. When used with

integral lines computed through numerical approximation, this gradient

construction algorithm yields Morse-Smale complexes whose manifolds

better align with the gradient induced by the domain interpolant.

Morse-Smale complexes have been a popular topological abstraction

for data analysis and visualization, especially for data segmentation tasks

in applications where features of interest (or their boundaries) coincide

with the gradient. Then such features can be efficiently captured at

multiple scales of importance (thanks to persistent homology mecha-

nisms) by considering the cells of the Morse-Smale complex. This over-

all strategy has been applied with tailored analysis algorithms to vari-

ous applications, including the analysis of the Rayleigh-Taylor instability

(LBM∗06), vortical structures (KRHH11), porous media (GND∗07), cos-

mology (Sou11), combustion (GBG∗14), chemistry (GABCG∗14), etc. A

recent survey (DFFIM15) provides further details regarding the construc-

tion, simplification and application of the Morse-Smale complex.
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This chapter describes my contributions for the efficient and robust

computation of topological abstractions, which play a fundamental

role in scientific visualization in order to abstract high-level features from

raw scalar data (as described in the previous chapter).

First, I present a combinatorial technique, published in 2012 (TP12), for

the topological simplification of scalar data, given some user-defined or

application-driven constraints. The algorithm slightly perturbs the input

data such that only a constrained sub-set of critical points remains. Thus,

this technique can serve in practice as a pre-processing step that signifi-

cantly speeds up the subsequent computation of topological abstractions.

Second, I present an efficient algorithm, published in 2009 (TGSP09),

for the computation of Reeb graphs of PL scalar fields defined on PL 3-

manifolds in R3. This approach described the first practical algorithm

for volumetric meshes, with virtually linear scalability in practice and up

to 3 orders of magnitude speedups with regard to previous work. Such

an algorithm enabled for the first time the generalization of contour-tree

based interactive techniques to non simply- connected domains.
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The previous chapter introduced the theoretical background required

for the reading of this manuscript. In particular, it introduced several topo-

logical abstractions that play a fundamental role in scientific visualization

for feature extraction and data segmentation.

In this chapter, I described my contributions for the robust and efficient

computation of topological abstractions. I first focus on the case of PL

scalar fields defined on PL 2-manifolds (with a pre-processing algorithm

that speedups subsequent topological abstraction computations), then on

the case of PL scalar fields defined on PL 3-manifolds (with a fast Reeb

graph computation algorithm).

4.1 Efficient topological simplification of scalar

fields

As described in the previous chapter, the computation of the Morse-Smale

complex has a quadratic time complexity. This is also the case for popular

Reeb graphs algorithms, such as the approach by Patane et al. (PSF08).

However, in practice, it is often easy to discriminate critical points that

are non relevant application-wise. Therefore, if one could perturb the

input such that such critical points no longer exist, the subsequent com-

putation of topological abstraction would be greatly accelerated. More-

over, while existing schemes for the simplification of topological abstrac-

tions produce multi-resolution representations of the abstractions (previ-

ous chapter), they do not perform an actual simplification of the underly-

ing scalar field. This can often be useful for further analysis. Finally, in

contexts such as scalar field design, it is desirable to obtain a simplified

version of the input field directly without having to compute a computa-

tionally expensive topological abstraction.

In this section, I present a combinatorial algorithm for the general sim-

plification of scalar fields on surfaces (TP12). This algorithm is simple, fast

in practice, and more general than previous techniques. Given a scalar

field f , our algorithm generates a simplified function g that provably ad-

mits only critical points from a constrained subset of the singularities of

f , while guaranteeing a small distance || f − g||∞ for data-fitting purpose.

In contrast to previous combinatorial approaches, our algorithm is obliv-

ious to the strategy used for selecting features of interest and allows crit-

ical points to be removed arbitrarily (Fig. 4.1). In the special case where

topological persistence is used as a feature identification criteria, our al-
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Figure 4.1 – Given an input scalar field f (left), our combinatorial algorithm generates a

simplified function g that provably admits only critical points from a constrained subset

of the singularities of f . Our approach is completely oblivious to the employed feature

selection strategy, while guaranteeing a small distance || f − g||∞ for data-fitting pur-

pose. Thus it supports application-dependent simplification scenarios such as the removal

of singularities based on local geometrical measures, interactive user selection or even

random selection. The topology of the resulting field is summarized with the inset Reeb

graphs for illustration purpose.

gorithm generates a standard ε-simplification (EMP06). The algorithm is

simple to implement, handles surfaces with or without boundary, and is

robust to the presence of multi-saddles (the input is not restricted to true

Morse functions). Extensive experiments show the generality of our algo-

rithm as well as its high performance. In particular, the iterative nature

of the approach could require a large number of passes but in practice

we have not found examples requiring more than five iterations (normally

only two are needed). For this reason the experimental results show an

O(n log(n)) practical performance. To demonstrate the use of our ap-

proach, we present applications in terrain simplification as well as the

acceleration of topological abstraction computation.

This work makes the following contributions:

1. Approach: An approach for the topological simplification of scalar

fields that does not rely on persistent homology. It yields a sim-

pler, more intuitive, and general setting. We enumerate the critical

points that are non-removable because of the topology of the domain.

We consequently derive a strategy that supports the suppression of

arbitrary removable critical points of the field. This enables the devel-

opment of a more general simplification framework than previous

approaches, for which ε-simplification is a special case.

2. Algorithm: An iterative, combinatorial simplification algorithm

which is very simple to implement (only a few dozens of lines of

C++ code). Given a set of user constraints on the extrema of the
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output function, our algorithm automatically identifies and removes

the optimal set of saddles with regard to || f − g||∞, hence guaran-

teeing a small distance between the input and the output. In con-

trast to previous approaches, our technique works directly on PL

scalar field representations, is robust to multi-saddles, and handles

surfaces with or without boundary. The algorithm uses no compu-

tationally expensive topological abstraction, such as a Morse-Smale

complex or even a contour tree; hence it is very fast in practice. Our

extensive experiments on approximated worst-case scenarios show

that this iterative algorithm rarely takes more than two iterations to

converge.

4.1.1 Preliminaries

In the following, we consider a PL Morse scalar field f : M→ R defined

on an orientable PL 2-manifoldM.

General simplification of scalar fields on surfaces

Definition 64 (General Topological Simplification) Given a PL scalar field f :M→ R with

its set of critical points C f , we call a general simplification of f a PL scalar field

g : M → R such that the critical points of g form a sub-set of C f : Cg ⊆ C f

(with identical indices and locations).

It is often additionally desired that || f − g||∞ is minimized for data-

fitting purpose. In other words, a general simplification consists in con-

structing a close variant of the input field f from which a set of critical

points has been removed. We describe the possible removals:

Closed surfaces The Morse-Euler relation (property 11) defines a depen-

dency between the number of critical points of f and χ(M), where Ci
f is

the set of critical points of f of index i:

χ(M) = ∑
i∈{0,1,2}

(−1)i|Ci
f | = #min( f ) − #saddles( f ) + #max( f ) (4.1)

It follows that removing only one extremum, such that the total number

of critical points strictly decreases, implies the removal of one saddle (to

maintain χ(M) invariant) and reciprocally. In other words, the removal

of the saddles of f are dependent on the removal of its extrema. Certain

saddles of f cannot be removed:

χ(M) = 2− 2g(M) = #min( f ) − #saddles( f ) + #max( f ) (4.2)
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Figure 4.2 – Non removable critical points: (a) A global minimum and a global maxi-

mum have to be maintained for the field not to be constant. (b) 2 g(M) saddles cannot

be removed. Each boundary component has 2 non-removable global stratified extrema,

which turn into non-removable saddles (c) or (possibly) exchangeable extrema (d).

It follows that f counts exactly 2g(M) non-removable saddles, located

along the g(M) handles of the surface (Fig. 4.2(b)).

Surfaces with boundary The above properties are valid for surfaces with

boundary. In addition, for each boundary component B ⊆ ∂M, certain

saddles cannot be removed. Let fB be the restriction of f to B, and C fB its

critical points that we call stratified critical points. By construction, B is a

closed PL 1-manifold. Then:

χ(B) = ∑
i∈{0,1}

(−1)i|Ci
fB | = #min( fB) − #max( fB) = 0 (4.3)

It follows that B has an even number of stratified critical points. These

cannot be regular points of f on M. For instance, if a maximum of fB
is only surrounded on the interior of M by vertices with higher f values

(Fig. 4.2(c), right), its lower link is by construction not simply connected;

therefore it turns into a saddle of f . If it is only surrounded by vertices

with lower f values (Fig. 4.2(d), right), then it turns into a maximum of f

(otherwise it is a multi-saddle but f is assumed so far to have only simple

saddles). The symmetric property holds for the minima of fB . Since f

is required to admit distinct values for each vertex, fB admits a pair of

global stratified extrema (Fig. 4.2(c), middle). Consequently, each bound-

ary component ofM necessarily has a pair of critical points of f . If these

two points are extrema, they can be removed only if they are not the only

extrema of f , leaving a necessary saddle in place in exchange. Otherwise,

these necessary critical points are non-removable saddles of f (Fig. 4.2(c),

left). In conclusion, the removal of the saddles of f is completely depen-

dent on the removal of its extrema, and for particular cases (summarized

in Fig. 4.2) certain critical points are non-removable.
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Surface scalar field constrained topology

As discussed in the previous sub-section, the removal of the saddles of f

is dependent on the removal of its extrema. Then, given the sets of input

constraints C0
g and C2

g (the extrema of g), the target of general simplifica-

tion is to constrain the topology of the level lines of f such that the output

field g is close to f and admits as saddles a valid subset of C1
f (such that

the Morse-Euler relation still holds, Eq. 4.1). To constrain the topology of

the level lines f−1(i) of f , our strategy is to constrain the topology of both

the sub- and sur-level sets of f (L−(i) and L+(i) respectively), which is

more practical to achieve. We show in the following that, for surfaces, con-

trolling the connectivity only of L−(i) and L+(i) is sufficient to enforce

the removal (or the preservation) of the removable critical points of f .

Let f− : M → R be a PL Morse scalar field with only one maxi-

mum and several minima (Fig. 4.3). Since f− has only one maximum,

β0(L+(i)) = 1 for all the i values under the maximum (each vertex of

L+(i) has a non-empty upper link and thus admits a connected path to

the maximum).

Minima A minimum at isovalue i has an empty lower link; then there

exists no connected path on L−(i) linking this minimum to other lower

minima. Thus, as i changes continuously in R, when passing through a

minimum of f−, a new connected component of L−(i) has to be created

and β0(L−(i)) increases (Fig. 4.3(b)).

Regular vertices The lower link of a regular vertex at isovalue i is made

of one connected component. Then, (a) it cannot merge distinct compo-

nents of L−(i) and (b) there exists connected paths on L−(i) linking it

to lower minima. Thus, passing through a regular point does neither (a)

decrease nor (b) increase β0(L−(i)).

Interior saddles By construction, the lower link of a simple saddle on the

interior of M is made of two connected components (Fig. 3.12(c)). These

components can either be linked to (a) the same or to (b) distinct connected

components of L−(i). In the latter case (b), β0(L−(i)) decreases when

passing the saddle. In the former case (a), neither β0(L+(i)) nor β0(L−(i))
changes (β0(L+(i)) = 1 for all i below the maximum). However, since

f− is Morse, f−1(i) changes its topology at the saddle. In the interior

of surfaces, the only possible topological change of f−1(i) is a change of
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Figure 4.3 – Given a Morse function f− admitting one maximum and several minima

(left inset), the number of connected components of the sub-level set (in blue) increases

when passing a minimum (b), decreases when passing a removable saddle (c) and does

not change when passing the non-removable saddles (d, e) and the maximum (f).

β0( f−1(i)). Saddles which change β0( f−1(i)) while preserving β0(L+(i))

and β0(L−(i)) have been shown to correspond to the saddles opening

or closing the loops of the Reeb graph of the function (TGSP09) and for

surfaces, these loops correspond to the handles of the surface (CMEH∗03).

Thus, the only interior saddles of f− for which β0(L−(i)) does not change

are the 2g(M) non-removable saddles (Fig. 4.2(b) and Fig. 4.3(d)).

Boundary saddles Simple boundary saddles can be classified into two

categories. In the first case (join saddles), the lower link is made of two

components (each lying on the same boundary component B ⊆ ∂M) and

the upper link of one (Fig. 4.3(e)). The second case (split saddles) is sym-

metric: the lower link is made of one component and the upper link is

made of two components on the boundary. Since β0(L+(i)) = 1 ( f− has

only one maximum) and since their lower link is made of only one compo-

nent, neither β0(L+(i)) nor β0(L−(i)) changes when passing split saddles.

For a join saddle, noted sj, the two components of the lower link can either

be linked to (a) the same or to (b) distinct connected components of L−(i).
In the latter case (b), β0(L−(i)) decreases when passing sj. Otherwise (a),

neither β0(L−(i)) nor β0(L+(i)) changes and there exists a connected path

on L−(i) connecting the two components of the lower link of sj. This path

encloses the boundary component B on which sj lies (Fig. 4.3(e)). This

implies that {B − sj} ⊂ L−(i) since L+(i) is made of only one component

(the presence of a vertex on B with a value higher than i would then imply

that β0(L+(i)) > 1). Thus, sj is the stratified global maximum of f−B . In

other words, for each boundary component B ⊆ ∂M, the only join sad-

dle of f− for which β0(L−(i)) does not change is a non-removable saddle

(Fig. 4.2).
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Maximum The lower link of a maximum is made of only one connected

component. Then, a maximum cannot merge or create a new component

of L−(i). Thus β0(L−(i)) does not change when passing through a maxi-

mum (Fig. 4.3(f)).

The symmetric properties hold for a Morse function f+ : M → R

admitting only one minimum and several maxima. Since the input fields

are assumed to be Morse functions, when passing through a given criti-

cal point, only one topological event can occur at a time on the level set

(Mil63), which enables the viewing of each critical point as an instance of

the cases reviewed above. Then, in conclusion, the only critical points of

the field for which both β0(L−(i)) and β0(L+(i)) do not evolve are the

non-removable saddles due to the topology ofM; for the removable criti-

cal points of f , either β0(L−(i)) or β0(L+(i)) changes. Thus, it is possible

to constrain the topology of the output field g by only controlling the con-

nectivity of L−(i) and L+(i). The next subsection presents an algorithm

exploiting this property.

4.1.2 Algorithm

Our algorithm naturally follows from the properties discussed in the pre-

vious subsection. Given the constraints C0
g and C2

g, it iteratively recon-

structs the corresponding sub- and sur-level sets, while removing the op-

timal set of saddles with regard to the L∞ norm.

Algorithm description

In the following, we start by describing the algorithm for sub-level set

constrained reconstruction.

Sub-level set constrained reconstruction The pseudo-code for sub-level

constrained reconstruction is given in Algorithm 1. To guarantee that the

input field admits distinct values on each vertex, symbolic perturbation

is used, as described in Section 3.1.2. In addition to its scalar value, each

vertex v is associated with an integer offset (noted o(v)) initially set to

the actual offset of the vertex in memory. When comparing two vertices

(for critical point classification for instance), if these share the same scalar

value, their order is disambiguated by their offset o. Algorithm 1 modifies

both vertex scalar values and offsets.
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Algorithm 1: Sub-level set constrained reconstruction
input : Scalar field f :M→ R (with n scalar ( f ) and offset (o) values);
input : Set of minima constraints to enforce C0

g ;
output: Scalar field g :M→ R with enforced minima in C0

g .

begin
// T: set of vertices (self-balancing binary search tree).
T ← ∅;
// i: time (integer) when a vertex was last processed.
i← 0;

// Initialize T with the minima constraints.
foreach m ∈ C0

g do T ← {T + m};

repeat
v← argminx∈T f (x);
T ← {T − {v}};
mark v as visited;
// Add unvisited neighbors.
T ← {T ∪ {vn ∈ Lk(v) | vn is not visited}};
A[i]← v;
i← i + 1;

until T = ∅;

// Scalar and offset value update, for all the vertices.
// Make the ordering on g (scalar and offset values) consistent with the order of visit.
for j← 0 to n do

if j 6= 0 && f (A[j]) < g(A[j− 1]) then
g(A[j])← g(A[j− 1]);

else
g(A[j])← f (A[j]);

o(A[j])← j;

end

The algorithm starts by pushing the minima constraints C0
g into a self-

balancing binary search tree (noted T) ordered by scalar value and offset.

Then, the sub-level sets are iteratively reconstructed, 0), one vertex at a

time, in a flooding fashion: the unvisited neighbors of the visited vertex

are added to T and the vertices of T are uniquely visited in increasing or-

der of scalar value (and offset) until the entire domain is processed. For

instance, Fig 4.4 shows the removal of the lowest minimum of f . Hence,

all the minima of f have been added to C0
g except for the global mini-

mum. The corresponding flooding is progressively shown in the middle

of Fig. 4.4, where the visited and unvisited vertices appear in blue and

green respectively. The resulting order of visit of each vertex is stored

in the array A. The last step of the algorithm traverses A and updates

the vertex scalar values and offsets such that the order defined by the

output field is equivalent to the order of visit of the vertices (then the sub-

level sets L−(i) of the output field indeed correspond to the iteratively

reconstructed sub-level sets). As shown in Fig. 4.4 (right), this strategy for

function value update has the effect of flattening the output in the vicinity

of the removed minima.
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Figure 4.4 – Removing the lowest minimum (small box on the input) by sub-level set

constrained reconstruction (in blue). The algorithm enforces the minima constraints while

implicitly removing saddles.

Since the sub-level sets are grown by adding the vertices of T with

smallest function value first, if a connected component of L−(i) were to

hit a minimum constraint m ∈ C0
g before the latter was popped out of T,

this would imply that m had a neighbor with lower initial function value,

through which the component entered the link of m. This implies that m

was not a minimum in the input, which is an invalid constraint. Then, for

each m ∈ C0
g, m is visited before the vertices of its link; hence the vertices

of C0
g are all minima in the output. The other vertices which do not belong

to C0
g can only be visited by the iterative growth of L−(i), after that one

of the vertices of their link has been visited. Hence, their lower link is not

empty in the output and the vertices m ∈ C0
g are then the only minima of

the output (Fig. 4.4).

When passing a saddle s of the input which used to join distinct com-

ponents of sub-level sets, if only one component of L−(i) hits the saddle,

this implies that the minimum which created initially the other compo-

nent does not belong to the constraints C0
g. Then, the component of L−(i)

traverses s and continues to grow by visiting vertices with smallest values

first, eventually sweeping the removed minimum (Fig. 4.4(b)-(d)). Other-

wise, s is maintained as a saddle in the output.

Hence, the algorithm implicitly removes saddles given the extrema

constraints and guarantees a valid topology of the output. Note that, since

the algorithm visits the vertices of T with smallest value first, the saddle

removed with one minimum m is the lowest saddle s which used to join

the sub-level set component created by m in the input (i.e. the next saddle

from m up the join tree): thus the algorithm minimizes | f (m)− f (s)| when

removing one saddle s along with one minimum m. Since the update of

function value will lift m up to the level of s (g(m) ← f (s), algorithm 1),

|| f − g||∞ will be equal to | f (m)− f (s)| (for instance, in Fig. 4.5, B is lifted
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Figure 4.5 – Sub-level set constrained reconstruction can introduce residual maxima (red

spheres): in (a), all the neighbors of D are visited before it, hence yielding a maximum (b).

Symmetrically, in (b), all the neighbors of B are visited before it, yielding a minimum (c).

Alternating sub- and sur- level set reconstruction reduces the (offset) function difference

between the residual extrema and their corresponding saddle (cf. vertex ordering, bottom),

and converges to the removal of all the residuals.

up to the level of E). Thus the algorithm removes the optimal set of saddles

with regard to || f − g||∞, hence guaranteeing a small distance between the

input and the output (for the regions where no simplification is needed,

the function is unaltered).

Sur-level set constrained reconstruction The constraints C2
g are enforced

with the symmetric algorithm: the vertices of C2
g are initially pushed in T

and the vertices of T are visited in decreasing order of function value (the

update of the function values is also symmetric).

Overall algorithm As shown in Fig. 4.5, while algorithm 1 guarantees

that the constraints C0
g will be the only minima of the output, it does

not guarantee that C2
g will be the only maxima. When the reconstructed

sub-level set removes a saddle, the algorithm visits the vertices of low-

est function value in priority, possibly leaving islands of non-visited ver-

tices behind (Fig. 4.5(a)), yielding residual maxima in the output function

(Fig. 4.5(b)). The symmetric remark goes for the sur-level set reconstruc-

tion regarding minima constraints. To remove these residuals, our over-

all algorithm successively alternates sub- and sur-level set reconstructions

until C0
g and C2

g are the only extrema. We show in the following that this

process converges.

Convergence Algorithm 1 lifts up the minima to remove, since they are

visited after their associated saddle (Fig. 4.5(a)). Then, when removing a
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minimum m (B, Fig. 4.5(a)), residual critical points can only occur higher

than the minimum’s associated saddle (E, Fig. 4.5(a)), but lower than its

next vertices in the global vertex ordering (F and G, Fig. 4.5(a)). Symmet-

rically, sur-level set reconstruction pushes down the maxima to remove.

Then new residual critical points (B and D, Fig. 4.5(c)) occur lower than

the residual saddle of the previous step (C, Fig. 4.5(b)), but still higher

than the original (E, Fig. 4.5(a)). Alternating sub- and sur-level set re-

construction will keep on reducing the function range where the residual

extremum and its corresponding saddle appear. Eventually these will be

consecutive in the global vertex ordering (Fig. 4.5, bottom) leaving no more

room for new residuals at the next iteration.

From symbolic to numerical perturbation After convergence, it may be

useful to convert the symbolic perturbation (vertex offset o(v)) into numer-

ical perturbation, to represent the output field g with a numerical value

only for each vertex. The final array A (algorithm 1) is traversed in in-

creasing order and whenever a vertex is at the same value (or lower) than

its predecessor (g(A[i]) ≤ g(A[i − 1])), its function value is increased by

an arbitrarily small value ξ: g(A[i]) ← g(A[i − 1]) + ξ. This numerical

perturbation should be restricted only where it is needed (flat regions of

g) to maintain || f − g||∞ to a small value. For instance, in Fig. 4.5, the

vertices D, B and C should all have a final function value in the interval

( f (E), f (F)). Hence, ξ should be smaller than δ f
n , where δ f is the small-

est (non-zero) function value absolute difference in the input and n is the

number of vertices inM.

Algorithm properties

Relation to ε-simplification The implicit pairing performed by our algo-

rithm is compatible with the pairing of critical points based on persistence:

given one extremum removal, it pairs a minimum (respectively, a maxi-

mum), with its closest saddle up the join tree (respectively, down the split

tree). Moreover, given one extremum removal, || f − g||∞ will be equal to

the absolute difference in function value between the extremum and its

paired saddle. For instance in Fig. 4.5, B is paired with E and || f − g||∞ is

equal to | f (B)− f (E)|. Thus, if the input constraints are selected accord-

ing to topological persistence (the persistence of the pairs associated with

each critical point of C0
g and C2

g is higher than ε), then || f − g||∞ ≤ ε.



82 Chapter 4. Abstraction

Figure 4.6 – Simplifying a saddle with high multiplicity (a): 4 components of sub- and

sur-level sets merge in the saddle (inset Reeb graph: sub- and sur- level sets are marked in

blue and green respectively). Removing one extremum (box in (a)) decreases the number

of components of the lower and upper links by 1 (b). Removing other extrema (box in (b))

eventually decreases this number to 2, yielding a simple saddle (c).

Non-Morse inputs Multi-saddles may occur in the input, preventing f

from being a Morse function. For these, the lower and upper links can

be made of more than two components. Our algorithm handles these de-

generate cases with no modification: removing one extremum associated

with a multi-saddle will simply decrease the saddle’s multiplicity in the

output by one (Fig. 4.6).

4.1.3 Results and discussion

In this section, we present practical results of our algorithm obtained with

a C++ implementation on a computer with an i7 CPU (2.93 GHz).

Time requirement

The algorithm uses no computationally expensive topological abstraction,

such as a Morse-Smale complex or even a contour tree. Therefore each

iteration is extremely fast in practice. Given a surface with n vertices, in-

serting and removing a vertex from the self-balancing binary search tree T

takes O(log(n)) time. Each vertex is uniquely visited. Thus, the complex-

ity of an iteration is O(n log(n)), irrespectively of the number of critical

points to remove. In theory, the number of iterations required for the algo-

rithm to converge could possibly be non-negligible. Given one extremum

removal, after each reconstruction, the distance in the global vertex or-

dering which separates a new residual extremum from its corresponding

saddle decreases at least by one (this distance is illustrated by a black ar-

row in Fig. 4.5, bottom). As this distance can initially be close to the num-

ber of vertices in the mesh, n reconstructions could be required, yielding
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Figure 4.7 – Running times (log scale) for the simplification of random functions, with

a random constraint selection (C0
g, C2

g), 50 runs per data-set.

an O(n2 log(n)) worst case complexity, irrespectively of the number of

removed extrema.

Traditionally, random scalar fields are considered as relevant approxi-

mations of worst-case scenarios. Moreover, considering multiple instances

increases the chances to get a proper worst-case approximation. We show

in Fig. 4.7 the average and maximum running times (in log scale) for the

algorithm to achieve convergence on a set of meshes (including exam-

ples with high genus, up to 116), for which 50 instances of random fields

have been considered and for which the constraints C0
g and C2

g are ran-

dom subsets of the fields’ extrema. In particular, critical points from C0
f

are uniquely added to C0
g in random order until |C0

g| is equal to a ran-

dom fraction of |C0
f | (the constraint set C2

g is constructed similarly). For

most data-sets, the average number of required iterations is smaller than

or equal to 2 and the maximum number of iterations is never greater than

5. This shows that, from a practical point of view, the number of required

iterations is negligible with regard to n, hence yielding O(n log(n)) prac-

tical running time. In our experiments, the algorithm took at most 10.7

seconds to compute on a mesh with 1 million vertices (6.3 million sim-

plices total).
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Figure 4.8 – In the special case where the critical points in C0
g and C2

g are all more

persistent than ε, our algorithm produces an ε-simplification (|| f − g||∞ ≤ ε). Both the

(vertex) position and the function value of the remaining removable critical points are

preserved after simplification (top insets), even in the presence of multi-saddles (6 in the

input). The topology of the resulting field is summarized with the inset Reeb graph for

illustration purpose (input surface: 725k vertices).

Discussion

A unique aspect of our algorithm is its ability, given the constraints C0
g and

C2
g, to automatically identify and remove the optimal set of saddles with

regard to the L∞ norm. Moreover, this is accomplished without the need

to carry a union-find data-structure unlike previous techniques. Although

this data-structure has nearly linear time complexity in theory, practically

it could cause slowdowns by a non-negligible constant factor, given the

algorithm’s low resource requirement. Also, after simplification, the (ver-

tex) position of the remaining critical points is preserved. In the special

case where the critical points of C0
g and C2

g are selected based on topo-

logical persistence, the algorithm produces a standard ε-simplification, as

shown in Fig. 4.8. In contrast to previous approaches, our algorithm di-

rectly works on a PL representation of the field, which is more acceptable

application-wise. Importantly, it is also more general as critical points

can be removed arbitrarily (at the exception of the non-removable critical

points summarized in Fig. 4.2), irrespectively of the employed feature-

selection strategy.

Limitations

Given our formulation of general simplification, for specific constraint

configurations, the value of the remaining critical points may change af-

ter simplification. For instance, if the lowest minimum in C0
g is initially

higher than the highest maximum in C2
g, the algorithm will change their
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values to satisfy the topological constraints. Also, when removing only

one extremum from the boundary, it will be replaced by a boundary sad-

dle if it is associated by the algorithm (with regard to the L∞ norm) with

an interior saddle (Fig. 4.6). This is due to the fact that the number of

critical points must be even on each boundary component, which may be

counter-intuitive from a user’s perspective. Moreover, whereas our algo-

rithm removes the optimal set of saddles with regard to || f − g||∞ given

some extrema constraints, our strategy for function value update (which is

purely based on flooding) does not guarantee a minimization of || f − g||∞,

although the resulting L∞ norm is close to the theoretical minimum. In the

context of persistence driven simplification, Bauer et al. (BLW12) showed

that optimality could be reached by a combination of carving (i.e. pulling

the saddles halfway towards their associated extremum) and flooding (i.e.

pushing the extrema halfway towards their associated saddle) at the ex-

pense of no longer guaranteeing a function value lock on the maintained

critical points. By simplifying all the pairs less persistent than ε, their ap-

proach yields || f − g||∞ ≤ ε
2 . In contrast, like in (EMP06), our approach

yields || f − g||∞ ≤ ε but locks the maintained critical points in terms of

function value. In the context of general simplification, the optimal bal-

ance between carving and flooding is more difficult to evaluate, as it is

no longer a local decision which depends only on the pair of removed

critical points (excessive carving could break the enforcement of near-by

extrema located in the vicinity of the removed saddles). We addressed this

issue and provided an optimal algorithm, derived from this approach but

slower in practice and more difficult to implement, in a follow-up work

(TGP14). Like any combinatorial approach, our algorithm provides strong

guarantees on the topology of the output at the expense of its geometri-

cal smoothness. Unlike previous combinatorial algorithms using carving

(EMP06, AGH∗09, BLW12), our algorithm uses flooding only. Hence, it

does not suffer from the usual artifacts of carving (visible thin paths link-

ing sets of removed critical points), but from those of flooding (flat regions

in the output, Fig. 4.4, right). In our experiments, we found that these ar-

tifacts were usually little noticeable, unless the features removed by the

user span a large region of the domain (Fig. 4.4, right). If smoothness

is desired, our approach can be combined with a numerical technique to

provide smooth outputs that still benefit from the topological guarantees

of our algorithm (see Sec. 7.1).
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Figure 4.9 – Simplifying the Grand Canyon ((a), 500k vertices, 65,526 critical points,

bottom) with a location driven feature selection (black: canyon, green: north rim, blue:

south rim). (b) Maintaining only one minimum and removing all the critical points from

the canyon (16,756 critical points remain) emphasizes the topological features of the rims

and simulates a massive flooding of the canyon. (c) Removing all the critical points from

the rims (2,296 remaining) emphasizes the topological features inside the canyon. An ε-

simplification with compatible L∞ norm (d) completely discards the features irrespectively

of their location (zoom insets) while yielding a worse average data fitting (Avg(| f − g|)).

Application

In practice, non-relevant critical points can often be easily discriminated,

by discarding either certain range or domain ranges. We illustrate this

process with terrain simplification, where we show that ad-hoc application

driven constraints can be easily incorporated in our simplification scheme

to ease further analysis. This is particularly useful if this latter analysis in-

volves the computation of topological abstractions (for segmentation tasks

for instance). Then, we show that a pre-simplification of the data based

on application driven constraints can greatly accelerate the computation

of topological abstractions. Other application examples of this technique

are demonstrated further down this manuscript.

Topological simplification of terrains can be particularly useful for to-

pographic analysis or water flow simulations as discussed by Bremer et

al. (BEHP04). However, the original topological persistence measure can

be unsatisfactory for selecting features in such a context, as the charac-

terization of features of interest is application dependent and at times

can also be data-set dependent. Fig. 4.9 exemplifies this observation on

the Grand Canyon elevation data-set, which initially counts 65,526 crit-

ical points. The Grand Canyon can be decomposed in three major re-
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Data-set |Cg| Simplification Time (s.) Reeb Graph Time (s.) Speedup

Original - Fig. 4.9(a) 65,526 - 125.723 -

Rims - Fig. 4.9(b) 16,756 1.783 12.976 9.69

Canyon - Fig. 4.9(c) 2,296 1.123 4.432 28.37

Persistence - Fig. 4.9(d) 12 1.702 0.313 402.28

Table 4.1 – Computation times and speedups for the Reeb graph computation of the

simplified data, with the algorithm by Patane et al. (PSF08).

gions from a geographic point of view: the canyon itself, its north rim

and its south rim. These regions (in black, green and blue respectively in

Fig. 4.9(a)) have been initially extracted by segmenting the image along

high elevation gradient and interactively completed by the user. Based on

this initial decomposition, we present two simplification scenarios. First,

in Fig. 4.9(b), the topology of only the rims has been emphasized: only

the lowest minimum above 53% of the total elevation difference has been

maintained, the critical points inside the canyon have been selected for

removal and all the maxima on the rims above 53% of elevation have been

maintained. In less than 2 seconds, our algorithm constructs the corre-

sponding flooded Grand Canyon, while enforcing the preservation of the

selected topological features on the rims. A contrary scenario would con-

sist in emphasizing the peaks inside the canyon. For instance, the result of

such a simplification strategy can drive a mesh simplification procedure

for an interactive fly-through within the canyon. In that case (Fig. 4.9(c)),

only the global minimum has been maintained and all the maxima outside

of the canyon have been selected for removal. Note that in comparison, a

standard ε-simplification with compatible L∞ norm (Fig. 4.9(d)) is unsat-

isfactory as it completely discards the topological features irrespectively

of their location (zooms in Fig. 4.9), while yielding a worse average data-

fitting (Avg(| f − g|)).
Table 4.1 shows the computation times for the Reeb graph construc-

tion of the simplified data, with the algorithm by Patane et al. (PSF08)

(as described in the previous chapter, the construction of this topological

abstraction is instrumental for data segmentation for instance). This table

shows that the simplification pre-processing step usually takes much less

time than the Reeb graph computation itself, while considerably improv-

ing its own performances with up to two orders of magnitude speedups

(depending on the number of critical points in g).
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Concluding remarks

This section presented a combinatorial approach for the general simpli-

fication of piecewise linear scalar fields on surfaces. By abstracting the

approach from the concepts of persistent homology, we believe to have

presented a simpler, more intuitive and more general description of scalar

field topological simplification. Also, we enumerated all the configura-

tions for which critical points were non-removable given the topology of

the domain, for surfaces with or with out boundary. From this, we de-

rived a strategy that allows for the arbitrary suppression of the removable

critical points of the field. We presented a simple iterative algorithm for

general topological simplification which, given some constraints on the

extrema of the output field, implicitly identifies and removes the optimal

set of saddles with regard to the L∞ norm, hence guaranteeing a small

distance || f − g||∞. Although it is iterative, extensive experiments on ap-

proximated worst-case scenarios showed that the algorithm rarely takes

more than 2 iterations to converge. The algorithm uses no computation-

ally expensive topological abstraction, such as a Morse-Smale complex or

even a contour tree; hence it is very fast in practice. We demonstrated

that it could be used as a pre-processing step to accelerate topological ab-

straction computation algorithms. In contrast to previous combinatorial

approaches, our approach works directly on a PL representation of the

field, is robust against multi-saddles, and handles surfaces with or with-

out boundary. Moreover, our approach solves a more general problem, for

which ε-simplifications have been shown to be a special case.

Thanks to its generality, robustness, good time complexity, ease of im-

plementation and practical performances, we consider this algorithm as

the reference for the topological simplification of scalar data on surfaces.

A natural direction for future work is the extension of this approach

to volumetric data-sets. As the algorithm works on the 0 and 1-simplices

of the domain only, it can be used in principle directly for domains of

arbitrary dimension. However, as the dimension of the domain increases,

new types of saddle points appear and more subtle topological transitions

occur on the level sets (genus changes through 1-2-saddle pairs). Hence,

enforcing the connectivity of the sub- and sur-level sets is insufficient for

the removal of 1-2-saddle pairs; the genus of the iso-surfaces also needs

to be efficiently controlled. However, this problem is NP-hard as recently

shown by Attali et al. (ABD∗13). This indicates that the design of a prac-

tical algorithm with strong topological guarantees is challenging.
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4.2 Efficient Reeb graph computation for volumetric

meshes

As discussed in the previous chapter, the Reeb graph is a fundamental

data-structure in scientific visualization for contour indexing with appli-

cations in fast contour handling, data segmentation and feature extraction.

However, as detailed in Section 3.3, algorithms with strong quadratic be-

havior in practice were only available for volumetric meshes and were

therefore not practically applicable for use in interactive applications.

In this section, I present a practical algorithm to compute Reeb graphs

on volumetric meshes in R3 (in particular tetrahedral meshes) that runs in

practice with comparable efficiency to a contour-tree algorithm, enabling

the practical generalization of contour tree based visualization techniques

to meshes of arbitrary topology. Our approach is based on the key con-

cept of loop surgery, inspired from surgery theory (Wal70). In particular,

we transform the input domain by a sequence of symbolic cuts such that

the Reeb graph of the input scalar field defined on the transformed do-

main is guaranteed to be loop free, and hence computable with efficient

contour tree algorithms. Then, some inverse symbolic cuts are performed in

the topology domain to convert the computed contour tree into the Reeb

graph of the original scalar field. We show that these symbolic cuts can

be computed in an efficient manner, with reasonable computation over-

head with respect to contour tree computation. Extensive experiments

show that our approach improves state-of-the-art techniques for comput-

ing Reeb graphs by several orders of magnitude in terms of running time,

with reasonable memory footprint.

This work makes the following contributions:

1. A procedure called loop surgery to reduce the problem of computing

a Reeb graph to that of a contour tree. We believe this is an important

result, since the join-split algorithm (CSA00) for computing contour

trees is well known to have not only optimal theoretical complexity,

but also simple and practical implementation.

2. A practical algorithm for computing Reeb graphs with complexity

O(n log n+ Nα(N)+ g(M∂)×NS). For practical examples, g, which

is equal to the number of handles of the domain, is a small con-

stant, and systematic experiments show a speedup over previous

algorithms by several orders of magnitude on average.

3. A proof showing necessary and sufficient conditions for a loop free
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Reeb graph to be computed correctly by the join-split contour tree

algorithm.

4.2.1 Preliminaries

In the following, we consider a PL Morse scalar field f : M→ R defined

on a PL 3-manifoldM embedded in R3.

Loops in Reeb graphs on PL 3-manifolds in R3

The key idea of loop surgery is to define a sequence of operations that

transform M to M′ with f ′ : M′ → R valued by f such that R( f ′) be-

comes loop-free, and then efficiently computable with contour tree algo-

rithms. Therefore, we carefully characterize the loops (independent cycles)

of R( f ) prior to introducing loop surgery.

Since M is compact and embeddable in R3, ∂M is necessarily non-

empty, orientable and closed (DG98) but possibly disconnected.

Let f∂ be the restriction of f to ∂M. We will first assume that both f

and f∂ are PL Morse functions (degenerate cases will be discussed later).

Let R( f∂) be the Reeb graph of f∂. Then, we have the following rela-

tion (CMEH∗03):

l(R( f∂)) = g(∂M) (4.4)

where g(∂M) is the sum of the genuses of the boundary components of

M. The key property that will allow us to implement loop surgery in an

efficient manner is the fact than the topology of M is closely related to

that of ∂M. In particular, the number of handles of M is the first Betti

number, β1(M), which is given by the following relation (DG98):

β1(M) = g(∂M) (4.5)

In simpler words, this relation expresses the fact that each handle of the

volumeM corresponds to a tunnel of its boundary surface.

As discussed in (CMEH∗03) in any dimension the construction of the

Reeb graph can lead to the removal of 1-cycles, but not the creation new

ones. Therefore, the number of loops of R( f ) cannot be greater than the

first Betti number ofM :

l(R( f )) ≤ β1(M) (4.6)

In conclusion, the number of loops of R( f ) cannot be greater than the

number of loops of R( f∂) :

l(R( f )) ≤ β1(M) = g(∂M) = l(R( f∂)) (4.7)
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(a) M, f (b) R( f∂) (c) Cutting

surfaces

(d) M′, f ′ (e) R( f ′)

Figure 4.10 – Overview of Reeb graph computation based on loop surgery: The input

defines a scalar function f (color gradient) on M (a). The Reeb graph of the function

restricted to the boundary R( f∂) (b) is used to identify loop saddles (blue squares).

Cutting surfaces (c) of each loop saddle are used to transform the domain (d) to M′.

The Reeb graph R( f ′) is loop free (e). Inverse cuts are applied to circled critical point

pairs to obtain the Reeb graph R( f ) of the input function.

A direct extension of the equation 4.7 is the following property:

Property 17 (Existence of loops) The existence of loops in R( f ) implies the existence of

corresponding tunnels in both M and ∂M, and thus of corresponding loops in

R( f∂). The inverse is not necessarily true.

A consequence of this property is that one can deduce information

about the loops of R( f ) by just studying R( f∂). In particular, a loop

of R( f∂) will yield a loop in R( f ) if its preimage through φ∂ at a given

isovalue contains contours of f∂ that form the boundary components of

distinct contours of f . It follows that each loop L of R( f ) maps through

ψ to an interval ψ(L) ⊆ ψ∂(L∂) being a subset of the image by ψ∂ of a

distinct loop L∂ of R( f∂). It follows that the loop saddles of each loop

L ∈ R( f ) lie on a monotone path on J ( f ) (or S( f )), being a subset of

the monotone path linking the loop saddles of the corresponding loop

L∂ ∈ R( f∂). This latter observation will be instrumental in our algorithm.

Loop surgery

When f∂ is PL Morse, there exists a unique pair of loop saddles for each

loop, consisting of an “opening” split saddle and a “closing” join sad-

dle. The existence of such pairs is guaranteed by extended persistence

(AEHW04). We uniquely associate each loop of R( f∂) with the closing

saddle of this pair. Moreover, by property 17, it is possible to associate

each loop in R( f ) with the loop saddles of the corresponding loop in

R( f∂). Notice that some loop saddles of R( f∂) may not be associated
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(a) M, f (b) R( f ) (c) R( f∂) (d) Si (e) M′, f ′ (f) R( f ′)

Figure 4.11 – Example where the domain (a) is not simply connected and R( f ) is loop

free (b). The Reeb graph of the boundary, R( f∂), has a loop (c), therefore loop surgery

is performed (d), (e). Even after loop surgery, each component of M′ is not necessarily

simply connected, but the Reeb graph of each component is loop free (f).

with any loop of R( f ). We will describe in the algorithm section how to

identify candidates for the loop saddles of f given those of f∂.

Loop surgery consists of transforming the domain M such that R( f )

becomes loop-free. In other words, loop surgery breaks the loops of R( f )

and reflects that transformation onM. For each loop 1-saddle si of f with

value f (si), we define its cutting surface Si as a contour of f (a connected

component of isosurface inside the volume) at value f (si) − ε such that

f (si)− ε is a regular value of f , there is no critical value in [ f (si)− ε, f (si))

and Si intersects one of the connected components of the lower star St−(si)

in the volume. The symbolic cuts transforming M into M′ consists of

cutting M along each defined cutting surface, as illustrated in figures

4.10(c) and 4.10(d).

On R( f ), cutting along a cutting surface at a regular value is equiv-

alent to cutting a 1-simplex of R( f ) and creating a new pair of critical

nodes (a minimum and a maximum, as illustrated in figure 4.10(e)). Then,

the Reeb graph of the function f ′ :M′ → R, f ′ being the function valued

by f after symbolic cuts, is guaranteed to be loop free: all the possible

loops have indeed been broken, as shown in figure 4.10(e).

Once the loop-free Reeb graph R( f ′) is computed, inverse cuts can

be applied in a straightforward manner by removing pairs of minimum

and maximum nodes generated by the same cutting surface, and gluing

together the corresponding 1-simplices.

Loop free Reeb graph computation

The algorithm presented by Carr et al. (CSA00) computes the contour tree

by tracking the joining of sub- and sur-level set components. Traditionally,

simply-connectedness of M has been used as a condition to ensure cor-

rectness of this algorithm. However, a Reeb graph can be loop free even
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Figure 4.12 – Reference figure for property 18. Paths forming a loop in M map to

connected components forming a loop in R( f ).

when the domain is not simply connected, as shown in figure 4.11(b). This

is especially important, since our loop surgery procedure does not guaran-

tee that the domain is divided into simply connected regions. Therefore,

we prove necessary and sufficient conditions for this contour tree algo-

rithm to work. The following property shows when a saddle creates a

loop in the Reeb graph.

Property 18 (Loop saddles) Let f :M→ R be a PL Morse scalar field and σ be a valence-3

0-simplex of R( f ) being the image by φ of a join saddle s (see figure 4.12). If

the contours joined by the saddle are on the boundary of the same sub-level set

component, then there exists a loop inR( f ) for which σ is the highest loop saddle.

Proof. Refer to figure 4.12 in the following. Given σ, s, f , and R( f ), let ε

be a small number such that there is no critical value in the range [ f (s)−
ε, f (s)). The existence of such an epsilon is guaranteed because the critical

values of a Morse function are distinct. Let w = f (s)− ε, and a and b be

the points on the two downward 1-simplices of R( f ) from σ such that the

value of their corresponding contours ca and cb is w, i.e., f (ca) = f (cb) =

w. By construction, s is a join saddle, therefore there exists a path p+ inM
connecting a point in ca with a point in cb such that all its interior is in the

sur-level set L+(w). φ is continuous, therefore a connected component p+

inM is mapped to a connected component φ(p+) inR( f ), such that a and

b are connected in R( f ) by a path q+ ⊆ φ(p+) whose interior is strictly

above w. Since by hypothesis ca and cb are on the boundary of the same

sub-level set component, there exists also a path p− in M connecting a

point in ca with a point in cb such that all its interior is in the sub-level set

L−(w). Therefore a and b are also connected inR( f ) by a path q− ∈ φ(p−)

whose interior is strictly below w. The two paths q++ q− form a loop.
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By applying property 18, we prove necessary and sufficient conditions

for computing correct loop free Reeb graphs using tracking of sub- and

sur-level sets.

Property 19 (Loop free Reeb graphs) Let f : M → R be a PL Morse scalar field. Its Reeb

graph R( f ) is loop free if and only if every valence-3 0-simplex of R( f ) is the

image through φ of a saddle of f where distinct components of sub- or sur-level

sets join.

Proof. First we prove that if a Reeb graph R( f ) is loop free, every valence-

3 0-simplex σ is the image through φ of a saddle s of f that joins distinct

components of sub- or sur-level sets. Assume that there exists a valence-3

0-simplex that joins contours that are on the boundary of the same sub-

or sur-level set component. Then by property 18, there must be a loop in

R( f ). This contradicts the hypothesis statement that R( f ) is loop free.

Next, we prove that if every valence-3 0-simplex of R( f ) being the im-

age through φ of a saddle joins distinct sub- or sur-level set components,

then R( f ) is loop free. Assume for contradiction that R( f ) has a loop, s

is the highest join saddle in the loop, and σ its image through φ. Pick ε, w,

a, b, ca, and cb as before. The paths q+ and q− exist in R( f ) connecting a

and b in a loop. The inverse map φ−1 is a continuous mapping of points of

the Reeb graph to contours of M, therefore φ−1(q−) is a connected com-

ponent inM, connecting ca to cb in L−(w). Therefore, ca and cb are on the

boundary of the same connected component of L−(w), which contradicts

the hypothesis. The same argument holds for split saddles.

Property 19 shows that we can use the contour tree algorithm pre-

sented by Carr et al. (CSA00) to compute loop free Reeb graphs, by track-

ing the connectivity evolution of sub- and sur- level sets. Performing loop

surgery guarantees that R( f ′) is loop free, and then computable with the

contour tree algorithm.

4.2.2 Algorithm

Our strategy for Reeb graph computation is summarized in Algorithm 2.

First, the domain is symbolically cut to ensure that the Reeb graph of f ′

is loop free. If a diagnostic shows that the domain has no handle, then

no loop surgery needs to be done. Otherwise, loop saddles are extracted

and the domain is symbolically cut along cutting surfaces. We keep track

of the extra pairs of 0-simplices of R( f ′) created by each cut. Since the

Reeb graph is guaranteed to be loop free, we compute it using a modified
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Algorithm 2: Reeb graph algorithm overview.
input : Scalar field f :M→ R;

begin
M′ ←M, GL = ∅;
if genus_diagnostic(∂M) > 0 then

S = find_surgery_loop_saddles(M, ∂M, f );
foreach s ∈ S do

M′ ← cut(M′ , cutting_surfaces(s));
GL = GL ∪ simplex_pairs(s);

R( f )← contour_tree(M′ , f ′);
foreach p ∈ GL do

R( f )← glue(R( f ), p);

end

version of the join-split tree algorithm (CSA00). Finally, the loop free Reeb

graph is transformed into the correct Reeb graph of the input function by

inverse cuts.

Loop surgery

The purpose of loop surgery is to symbolically cut the domain such that

R( f ′) is guaranteed to be loop free.

Genus diagnostic We first check if any loop surgery is needed by check-

ing the presence of tunnels on the boundary ∂M. This implements the

genus_diagnostic procedure of algorithm 2. In particular, we use the Euler

formula on ∂M:

χ(∂M) = 2− 2g(∂M) = n∂
v − n∂

e + n∂
f (4.8)

where n∂
v, n∂

e and n∂
f stand for the numbers of vertices, edges and triangles

of ∂M. The genus g(∂M) then gives the number of tunnels in ∂M and

hence the number of cuts needed to ensure that R( f ′) is loop free. Loop

surgery is needed only if this number g(∂M) is non-zero.

Loop saddles If the domain is cut at every loop saddle thenR( f ′) is loop

free. In this section, we implement find_surgery_loop_saddles of algorithm

2. One technique for finding the loop saddles of f∂ is computing R( f∂)

(using an existing technique such as (PSBM07)), and then identifying each

loop of R( f∂) using extended persistence (AEHW04). Alternatively, we

found in practice that the benefits of using a simpler technique for finding

overall a small superset of surgery loop saddles of f outweigh the cost of

performing additional cuts.

Loop saddles of f∂ are first selected in a three-step process: (i) all

saddles of f∂ are identified; (ii) we apply property 19 and remove from
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(a) ∂M, f∂ (b) Sublevel sets of f∂ (c) Join tree

of f∂

(d) Split tree

of f∂

(e) Loop

saddles

Figure 4.13 – Identifying loop saddles: f∂ and its saddle points (a). Loops are “absorbed”

by sub-level sets of f∂ (b). Join tree (c) and split tree (d) of f∂ identify non-loop saddles.

Loop saddles are returned (e).

these the ones that join distinct sub- or sur-level set components; and

(iii), we further extract a list of candidate surgery loop saddles of f . The

rules we employ resolve degenerate saddles implicitly. These steps are

explained in detail below.

(i) Saddles of f∂ occur at vertices of ∂M. A vertex x ∈ ∂M is a saddle

if and only if the number of connected components of its lower link is

greater than one. This number can be computed by a simple link traver-

sal technique (CMEH∗03). The set of all the saddles on the boundary is

denoted S∂.

(ii) We remove saddles S∂ that do not open or close a loop. To use the

result of property 18 in determining whether or not the saddle can be

part of a loop, we identify the sub- and sur-level set associated with each

connected component of the lower and upper link of a saddle of S∂. The

classification of sub- and sur- level set components is computed by con-

structing the join tree J ( f∂) and the split tree S( f∂). The join sweep that

builds the join tree processes vertices of ∂M in order of increasing func-

tion value, maintaining sub-level sets via a Union-Find data structure. In

the computed join tree of f∂, the number of downward 1-simplices of each

node is equal to the number of distinct sub-level set components of f∂ that

are joined at the corresponding vertex. Similarly, a split sweep builds the

split tree by processing vertices of ∂M from highest to lowest. The result-

ing split tree provides the information about the evolution of sur-level set

components.

When the number of downward 1-simplices in the join tree equals

the number of connected components of the lower link and the number

of upward 1-simplices in the split tree equals the number of connected

components of the upper link, the saddle does not open or close a loop in

R( f∂). These saddles are removed from S∂.
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Figure 4.14 – Examples of cutting surfaces of 3D scalar fields defined on non-simply con-

nected domains: skull (2 handles), brake caliper (3 handles), cylinder head (82 handles).

(iii) The set S∂ now exactly contains the loop saddles of f∂. As described

in the previous subsection, each loop L ∈ R( f ) maps to a monotone path

in J ( f ) (or in S( f )) being a subset of the monotone path linking the loop

saddles of the corresponding loop L∂ ∈ R( f∂). We identify candidates for

surgery loop saddles of f by walking upward from the lowest loop saddle of

L∂ in J ( f ) to its highest loop saddle (blue squares in Figure 4.13(e)) and

extracting the list of 1-saddles of f that map to the interior of 1-simplices of

J ( f ) (boundary loop saddles are paired on J ( f ) based on their function

values, yielding possible over estimations when boundary loops overlap

through ψ).

Cutting surfaces We symbolically cut M through a sequence of sym-

bolic cuts, implementing the procedure cutting_surfaces of algorithm 2.

According to property 19, to ensure that R( f ) be loop free, every 1-saddle

must join distinct sub-level set components. A surgery loop saddle s of

f does not have this property, therefore we perform symbolic cuts on M
such that each connected component of the lower link of s have a unique

sub-level set component.

A symbolic cut is a contour traversal that updates pointers in the tetra-

hera that are crossed. A cutting surface Si is a simple data structure with

a unique identifier that is the record of the symbolic cut. Let si be a

surgery loop saddle with value f (si) and let n be the number of connected

components of Lk−(si). Cutting surface traversals are started for (n− 1)

connected components Lk−(si), in particular at a tetrahedron adjacent to

each of these. Each symbolic cut produces a new sub-level set component,

which is recorded in the cutting surface data structure.

To keep track of the symbolic cuts in the rest of the algorithm, each

tetrahedron crossed by any cutting surface stores a pointer for each of its

vertices to the highest cutting surface passing below and the lowest cutting

surface passing above the vertex. Additionally, each vertex is marked

with a top flag (Figure 4.15, blue circle) if it lies above a cutting surface

crossing the tetrahedron, and also a bottom flag (Figure 4.15, red disc) if it

lies below a cutting surface crossing the tetrahedron. Finally, each saddle
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Figure 4.15 – Simulating symbolic minima in the presence of cutting surfaces (green,

blue and yellow) when visiting a vertex v during the join tree construction. Vertices with

a top (respectively bottom) flag are marked with a blue circle (respectively a red disc).

that generates symbolic cuts stores pointers to the corresponding cutting

surfaces.

Loop free Reeb graph computation

By property 19, a loop free Reeb graph can be computed using a contour

tree algorithm. Since we cut M only symbolically, we use a modified

version of the join-split algorithm (CSA00) that behaves “as if” M were

actually transformed into M′. Building the loop free Reeb graph using

the modified join-split algorithm implements the procedure contour_tree

of algorithm 2. This modified contour tree algorithm simulates the cuts

and uses a Union-Find data structure (using path compression and union

by rank) implemented to return the highest element of a set.

Vertices are processed in order of increasing function value, and each

vertex v is added to the join tree and a new set is created in the Union-

Find. If the star of v contains tetrahedra pointing to cutting surfaces, we

simulate M being cut by simulating the existence of a new sub-level set

and a new minimum by adding each cutting surface Si to the join tree and

the Union-Find. The tetrahedra in the star of v that have a vertex in the

lower link of v are iterated upon. For each such tetrahedron T, if there is

a cut Si crossing T, we pick the highest Si that is below v, as illustrated

in Figure 4.15 (black arrows emanating from cutting surfaces). This is a

constant time operation due to having stored pointers in each tetrahedron

in the cutting surface computation. We perform a find and then merge

the sets, also adding an arc to the join tree. This simulates having cut M
by Si, since it disconnects part of the lower link, and instead connects v to

an “artificial” minimum, which is the node returned by the Union-Find.

Next, the vertices in the lower link of v that were not disconnected by any
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Figure 4.16 – Examples of Reeb graphs of scalar fields defined on the experiment data-sets.

Persistence-based simplification and arc smooth embedding can optionally be computed

in a post-process.

cutting surface are processed (black arrows emanating from vertices in

Figure 4.15). If no tetrahedron in the lower star of v is crossed by a cutting

surface (i.e., v did not get marked as top) then the lower link of v can be

processed with no changes to the algorithm in (CSA00). The join tree of

f ′ is returned. The split tree is computed symmetrically, and merging the

two trees occurs exactly as in the join-split algorithm. This computes the

loop free Reeb graph R( f ′).

Inverse cuts

Transforming the loop-free Reeb graph R( f ′) into R( f ) requires gluing

minimum-maximum pairs of each cutting surface. This implements the

procedure glue of algorithm 2. For each cutting surface, pointers in the

data structure identify the minimum it generated in the join tree and the

maximum it generated in the split tree. The two 0-simplices are found

in R( f ′), and are glued together by concatenating the up-arc of the mini-

mum, and the down-arc of the maximum. This inverts the changes made

to R( f ′) by loop surgery.

4.2.3 Results and discussion

We implemented Reeb graph computation based on loop surgery in stan-

dard C under GNU/Linux. All the experiments presented below were run

on a standard desktop computer with a 64-bit 2.83 GHz CPU and 8 GB of

memory. Data sets are courtesy of the AIM@SHAPE shape repository and

collaborating mechanical design experts.

In our experiments, we compare running times with recent Reeb graph

computation techniques for tetrahedral meshes (PSBM07, DN08). We used

the original implementations of these approaches, kindly provided by

their respective authors. Furthermore, we compared the output of our
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approach to that presented in (PSBM07) using the exact same simulation

of simplicity (EM90), and found the two algorithms output identical Reeb

graphs for all the available datasets.

Time complexity

Let n and N be respectively the number of vertices and simplices of M.

Moreover, let n∂ and N∂ be respectively the number of vertices and sim-

plices ofM∂. Finally, let NS be the number of simplices ofM crossed by

cutting surfaces. We present a complexity analysis for each step in our

algorithm:

Loop saddle extraction Saddle identification by link traversal re-

quires O(n∂) steps. Join tree and split tree computation both require

O(n∂log(n∂) + N∂α(N∂)) where α() is an exponentially decreasing func-

tion (inverse of the Ackermann function). Surgery loop saddle candidate

extraction takes O(N) steps.

Symbolic cuts computation O(g(M∂)× NS) steps: each of the g(M∂)

handles ofM generates cutting surfaces and yields a traversal of at most

NS tetrahedra.

Loop-free Reeb graph computation the contour tree algorithm variant

requires O(nlog(n) + Nα(N)) steps (CSA00).

Inverse cuts O(g(M∂)) steps: there is an explicit list of cutting surfaces,

and gluing the min-max pairs of each takes constant time.

Overall bound O(nlog(n) + Nα(N) + g(M∂)× NS).

The worst case scenario is reached when both g(M∂) and NS (loop

surgery process) are linear with the size of the mesh, in which case our

algorithm will exhibit a strong quadratic behavior. However, with real-life

data, g(M∂) is a small constant, resulting in virtually linear scalability in

practice.

Performance comparison

We compare the running times of our approach with those of the two

fastest previous techniques, presented in (PSBM07) and (DN08). The
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Data Tets #H LS SA (PSBM07) OS (DN08)

Time Time Speedup Time Speedup

Langley Fighter 70,125 0 0.346 s. 43.70 s. 126.3 650.1 s. 1 879

Cylinder Head (low res.) 116,274 82 0.660 s. 10.20 s. 15.45 257.188s. 389.68

Hood (low res.) 120,501 31 0.340 s. 45.77 s. 134.62 52.602 s. 157.71

Trunk (low res.) 143,366 1 1.866 s. 27.97 s. 14.99 406.665 s. 217.93

Liquid Oxygen Post 616,050 1 0.686 s. 435.2 s. 634.4 15.54 s. 22.65

Brake Caliper (med res.) 1,155,317 3 2.242 s. - - 180,638 s. 80,570

Buckminster Fullerene 1,250,235 0 2.508 s. 9,887 s. 3,942 781.0 s. 311.4

Plasma 1,310,720 0 2.202 s. 11,983 s. 5,442 - -

S. Fernando Earthquake 2,067,739 0 4.068 s. 15,949 s. 3,921 - -

Brake Disk (high res.) 3,554,828 54 7.798 s. - - - -

Table 4.2 – Comparing Reeb graph computation run times. #H stands for the number

of handles in the mesh, LS for the loop surgery approach, SA for the streaming ap-

proach (PSBM07) and OS for the output sensitive approach (DN08). The loop surgery

approach processes in average 428 thousand tets per second and provides an observed

average speedup of 6,510. The “-” symbol means that either the process interrupted on a

memory exception or that the process had not completed after several days of computation.

scalar valued data represents a variety of physical phenomena: air tur-

bulence, pressure, liquid oxygen diffusion, rock density, etc. Table 4.2

reports the running times of the three methods on these data.

Our approach achieves significant improvement in terms of running

time for each data-set, including those with the highest number of han-

dles, resulting in an average speedup factor of 6,500.

The approaches presented in (PSBM07) and (DN08) rapidly stress

and exhibit a quadratic behavior on real-life data. Despite the theoretical

quadratic complexity of our loop surgery, the worst-case scenario seems

difficult to reach with real-life data.

Asymptotic stress tests

As described previously, the loop surgery procedure has a quadratic

worst-case complexity. In practice, for the experiments reported in Ta-

ble 4.2, we observed this step took 43% of the overall computation in aver-

age and that its time requirement was increasing both with the size of the

mesh and the number of handles. The pressure field on the trunk data-set

is a special case: it is an extremely noisy field that illustrates that we are

performing more symbolic cuts than necessary. Overall, we observe that

the loop surgery overhead is proportional to the cost of computing the

contour tree with real-life data.

Next, we provide a stress test to show the performance of the algo-
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Figure 4.17 – Handle stress experiment: examples of generated meshes with increasing

number of handles (top) and the Reeb graph of their height function.

rithm in a worst-case scenario. We generate meshes by tetrahedralizing

a rectilinear grid on from which rows and columns have been removed,

allowing us to increase the number of tets and the number of handles

independently. The function value of each vertex is its y coordinate. Fig-

ure 4.17 illustrates these meshes. Figure 4.18 shows the running time and

the memory footprint as a function of the number of handles and the size

of the mesh. This experiment shows that for a constant number of han-

dles, our algorithm scales linearly with the size of the mesh. When the

number of handles increases, the linear ratio also increases. The memory

footprint follows the same linear behavior as the time execution, due to

non-optimized data structures for storing cutting surfaces.

Limitations

A limitation of the algorithm is that it requires the mesh to be manifold

with boundary to ensure that the boundary of the mesh is a 2-manifold

without boundary. Another is that a given boundary loop can span several

1-saddles that map to the interior of 1-simplices of J ( f ). Each of these

will be extracted as a surgery loop saddle, yielding potentially several

cutting surfaces per handle.

Concluding remarks

In this section, I presented a practical algorithm for fast Reeb graph com-

putation on tetrahedral meshes in R3. By providing theoretical results on
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Figure 4.18 – Running time (solid lines) the memory footprint (dashed lines) when in-

creasing the number of tets for a mesh with constant number of tunnels.

the topology of such Reeb graphs, we showed their computation could be

reduced to a contour tree computation through a technique called loop

surgery. Experiments demonstrated in practice the scalability of the al-

gorithm. Moreover, we showed that our approach improves, in terms of

running time, the fastest previous techniques for real-life data by several

orders of magnitude.

Reducing the computational requirements of Reeb graphs to that of

contour trees enables the generalization of the contour-tree based interac-

tive techniques to volumetric meshes of arbitrary topology (as described

in the next chapter) and thus opens several avenues for future visualiza-

tion research. An extension of our approach to volumetric meshes not

embeddable in R3 and of higher dimensions would address a larger class

of problems. However, as it is no longer true that such meshes necessar-

ily admit boundary, the loop surgery concept would need to be extended

and generalized. Doraiswamy and Natarajan (DN13) later extended this

approach to manifolds of arbitrary dimension, by inserting cutting sur-

faces at each 1-saddle lying in the interior of a 1-simplex of the join tree

(and not necessarily those spanned by boundary loops), yielding a more

general algorithm at the expense of computing more cutting surfaces than

our approach. Due to its fast performances in practice, we considered

our loop surgery approach as the reference algorithm for the problem of

Reeb graph computation on tetrahedral meshes in R3 until an optimal

time complexity algorithm was introduced three years later (Par12).
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This chapter describes my contributions for the interactive manipula-

tion of topological abstractions. First, we describe an approach for

the interactive simplification of isosurfaces on non-simply connected do-

mains, for visual exploration purposes. This approach is enabled by our

fast Reeb graph computation algorithm, described in the previous chapter.

Second, we present two algorithms for the editing of topological abstrac-

tions in the context of data segmentation. First, I describe how to integrate

user constraints in the construction of a discrete gradient to incorporate

user knowledge in Morse-Smale complex based segmentations. Second,

I describe an approach for the interactive editing of the geometry and

topology of a Reeb-graph based segmentation for surface quadrangula-

tion purposes. This chapter presents parts of the results described in the

following papers: (TGSP09, STK∗09, GGL∗14, TDN∗12).
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As described in Chapter 3, topological abstractions are fundamental

data-structures in scientific visualization, to accelerate the computation

of geometrical constructions (such as level-sets) or to drive segmentation

algorithms. In this chapter, I describe my contributions for the interactive

manipulation of topological abstractions. After the data abstraction step

(discussed in the previous chapter), interactive manipulation capabilities

are often needed in practice to explore the features of interest, prior to

their quantitative analysis (discussed in the next chapter). In this chapter,

I describe two types of interactive manipulation approaches, for visual

exploration and data segmentation purposes.

5.1 Topological simplification of isosurfaces

Scientific data is often affected by noise. When extracting isosurfaces for

visual exploration purposes, noise can lead to the appearance of many

connected components of isosurfaces, some of which being not relevant

application wise but still occluding the components of interest of the iso-

surface. This occlusion problem can prevent users from visualizing and

understanding the geometry of the main features of the data.

Carr et al (CSvdP04) described an approach for the topological sim-

plification of isosurfaces on simply connected domains that addresses this

issue. As described in Chapter 3, the contour tree can be used as an index-

ing data-structure for the fast extraction of level sets. This capability can

be nicely combined with persistent homology concepts to only extract the

contours corresponding to the most persistent features of the data (Fig-

ure 3.19). Carr et al (CSvdP04) described other geometrical measures to

prioritize the cancellations of the 1-simplices of the contour tree, such as

the volume of their pre-image through φ or the integral of f over these

pre-images (called hypervolume). This work demonstrated the impor-

tance of such measures for segmentation tasks, as they induce more stable

and intuitive segmentation parameters.

In this section, thanks to our fast Reeb graph computation algorithm

(previous chapter), we generalize this interactive approach to non simply-

connected PL 3-manifolds. In particular, we focus on the analysis of pres-

sure fields in mechanical design (where the majority of meshes have han-

dles), a case study where contour-tree based techniques could not previ-

ously apply. One experiment in the process of mechanical design involves

the analysis of the resistance of mechanical pieces made of different ma-

terials to pressure stress. In such experiments, mechanical experts first
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Figure 5.1 – Topologically clean isosurface extraction on a pressure stress simulation

on a cylinder head. The Reeb graph is progressively simplified (from left to right) with

increasing hyper-volume scale. As a result, small components (noise) of the considered

isosurface are progressively removed (bottom) and the most important features are pro-

gressively highlighted (215, 58 and 9 connected components).

consider simulation previews computed on low resolution meshes. This

step illustrates the approximate behavior of the material. Its understand-

ing is crucial to define correct parameters for the actual simulation at high

resolution. However, as shown in Figures 5.1 and 5.2, this preview can be

noisy, making its interpretation difficult.

We overcome this problem with a fast topologically clean isosurface

extraction system. First, the Reeb graph of the low-resolution pressure

stress function is computed in a pre-process. Then, local geometric mea-

sures (CSvdP04) (extended to tetrahedral meshes) are computed for each

arc of the Reeb graph. Then, users may select thresholds for geometric

measures to simplify the Reeb graph, as described in (PSBM07). This fil-

tering of the arcs in our examples took at most 0.03 seconds. Our approach

maintains degree two nodes in the Reeb graph, representing regular ver-

tices of the function. Consequently, the Reeb graph provides a seed vertex

for each contour the user wants to display. We store the non-simplified

arcs of the Reeb graph in a balanced interval tree. An isosurface extrac-

tion query consists of searching in this tree for a valid seed set. In our

examples, this is performed in less than nanoseconds, starting standard

isosurface traversal techniques at these seeds in interactive times.

Figures 5.1 and 5.2 illustrate this process on pressure stress functions

computed on a brake disk and a cylinder head, where the user progres-

sively increases a simplification threshold with the hyper-volume mea-

sure (CSvdP04). The Reeb graphs are simplified, and as a result, the small

connected components (noise) of the queried isosurface are progressively

removed and the most important features are highlighted. This enables a

direct visualization of the major trends of the simulation.
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Figure 5.2 – Topologically clean isosurface extraction on a pressure stress simulation on a

brake disc. The Reeb graph is progressively simplified (from left to right) with increasing

hyper-volume scale. As a result, small components (noise) of the considered isosurface

are progressively removed (bottom) and the most important features are progressively

highlighted (92, 8 and 2 connected components).

Based on this approach, we introduced next an isosurface based visual-

ization widget for a large-scale simulation monitoring system. Large scale

numerical simulations running on super-computers are often analyzed on-

line with advanced monitoring systems (KVP∗08), providing the end users

with real time quantitative indicators describing the behavior of the sim-

ulation, allowing them to identify instantly possible run-time issues (mis-

takes in parameter settings for instance). However, the interpretation of

these indicators require strong user expertise and sometimes problematic

configurations are difficult to read from those. Therefore, there exists an

application need for on-the-fly visualizations of numerical simulations for

monitoring purposes. However, large scale simulation time steps are usu-

ally too large to be interactively transfered to a remote workstation for

visualization. Moreover, due to their size, not all of the time-steps of such

a simulation can be stored on the super-computer where they have been

generated. This prevents remote rendering and interaction and requires

in-situ visualization generation.

We addressed this problem by designing a prototype (STK∗09) for

the eSimMon monitoring system (KVP∗08) developed by Oak Ridge Na-

tional Laboratory, capable of generating in-situ isosurface renderings (Fig-
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Figure 5.3 – Isosurface based visualization widget for the eSimMon (KVP∗08) web-based

simulation monitor: isosurface rendering (top left), Reeb graph planar display (top right),

persistence slider (bottom right). Other view examples are provided on the side.

ure 5.3). The visualization of an isosurface is dictated by a number of

parameters such as view point and isovalue and possibly topological sim-

plification threshold. Therefore we implemented an in-situ algorithm that

finely samples in batch mode this parameter space (26 view points, 4 level

of possible topological simplification, plus the individual extraction of a

contour for each 1-simplex of the Reeb graph, in purple in Figure 5.3) and

generates for each parameter combination an in-situ offline 2D rendering

at a resolution of 1024 × 1024. Even by finely sampling this parameter

space, the data size of the output collection of 2D renderings for a given

time-step is configurable and in practice guaranteed to be orders of mag-

nitude smaller than that of the time-step itself. In our experiments, the

space required for this collection of 2D renderings was 140 Mb. Next, a

web-based client integrated into eSimMon enables the user to explore this

collection remotely by emulating the interactive control of these parame-

ters as showcased in Figure 5.3. Note in particular that only the 2D ren-

derings selected by the user are transferred to the web-based client. This

technique was enabled by our fast isosurface extraction and simplification

algorithms described previously. This prototype enabled simulation users

to obtain qualitative visual insights from their running simulations. A

similar strategy has been developed independently by Kitware Inc. five

years later in its visualization system ParaView Cinema (Kit14).
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In our experiments, only data-sets of moderate size were considered to

enable the development of this proof-of-concept prototype. As discussed

in Chapter 8, the in-situ processing of real-life sized data-sets raises a

number of important algorithmic challenges that require to revisit entirely

Topological Data Analysis algorithms.

5.2 Interactive editing of topological abstractions

As discussed in Chapter 3, topological abstractions are fundamental data-

structures in scientific visualization for data segmentation purposes. In

particular, the Reeb graph and its variants are well suited when the bound-

ary of the regions of interest align with level-sets, while the Morse-Smale

complex is well suited when features (or their boundaries) align with the

gradient. In many applications, such segmentations often directly corre-

spond to meaningful segmentation application-wise, with excellent clas-

sification scores. However, such approaches still result in general in the

identification of false negatives as compared to a manual labeling by a do-

main expert. In the following, I describe two approaches for the interactive

editing of topological abstractions, in order to integrate users’ knowledge

in the process.

5.2.1 Morse-Smale complex editing

As described in Chapter 3, when using the Discrete Morse Theory setting,

the first step for the computation of the Morse-Smale complex involves

the computation of a discrete gradient (Figure 3.20). In this sub-section, I

describe the first approach for the computation of a discrete gradient that

conforms to some alignment constraints provided automatically or inter-

actively by a user. Such a mechanism enables to correct in a pre-process

potential false positives in the segmentation, while still benefiting from the

multi-scale nature of persistent homology concepts applied to the Morse-

Smale complex. To define the concept of a conforming Morse-Smale com-

plex, we first introduce conforming discrete gradient vector fields. Given

a regular cell complex K, let f̂ : K0 → R be the input scalar data evaluated

on the vertices of K and let I : K → S be a surjective map from cells of K

to an index set S ⊂ Z.

Conforming Discrete Gradient We define a discrete gradient vector

field V as conforming to a map I if and only if for each discrete vector
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〈αi, βi+1〉 ∈ V, I(αi) = I(βi+1), meaning both the head and tail of a dis-

crete vector have the same label in I. We remark that the space of dis-

crete gradient vector fields is the same as the space of conforming discrete

gradient vector fields. This is easily seen, since (1) every conforming dis-

crete gradient vector field is also a discrete gradient vector field, and (2)

any discrete gradient vector field V is also a conforming discrete vector

field under the map I(α) = 1. Since the Morse-Smale complex MS( f ) is

uniquely determined by a discrete gradient vector field V, we sayMS( f )

conforms to a map I if and only if V also conforms I.

Algorithm

Computing discrete gradient vector fields so that they conform to any ar-

bitrary map I involves only a slight variation of previous techniques. In

particular, the added restriction that a gradient vector 〈α, β〉 can only be

created if I(α) = I(β) by definition creates a conforming discrete gradi-

ent. Note that any valid discrete gradient V can be converted to a con-

forming one by simply making each cell α and β critical when 〈α, β〉 and

I(α) 6= I(β). However, such a trivial modification does not represent how

the flow behaves when restricted to the boundary of a labeled section. In

the following algorithm, we create a discrete gradient vector field that con-

forms to I but nevertheless avoids creating critical cells where a discrete

gradient vector 〈α, β〉 can be created where f (β) ≤ f (α) and I(α) = I(β),

i.e., there exists some gradient flow restricted to the label I(α).

Our algorithm is inspired by Robins et al.: first create a discrete gra-

dient vector for a vertex-edge pair and then perform simple homotopic

expansions in the lower star (RWS11). The main difference is that we only

consider for pairing those cells that also share the same label. Robins’

algorithm has a strict ordering for performing homotopic expansions in

the lower star, and straightforward restriction of pairing based on labels

would create many extra critical cells. We instead take a very pragmatic

approach to reducing the number of spurious critical cells produced by re-

ordering the homotopy expansion to perform any possible pairing in the

lower star that is a simple homotopy expansion (the inverse of homotopic

collapses (Coh73)) yet also conforms to the labeling.

In the following, we denote a cell that has been identified as critical by

pairing it with itself, for example, 〈α, α〉. Furthermore, a cell is assigned if

and only if it has been identified as critical or paired in a discrete gradi-

ent vector. The function #UCF(γ), (Number of Unassigned Conforming
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Faces) counts the number of faces β ≤ γ of a cell γ restricted to the lower

star St−(α) such that β has not been assigned and I(β) = I(γ).

Algorithm 3: Conforming gradient construction algorithm.
input : Scalar field f̂ : K → R, map I : K → Z;
output: Conforming discrete gradient V;

begin
V ← ∅;
foreach α ∈ K0 do

S← {β1 ∈ St−(α) | I(α) = I(β1), α ≤ β1};
if S = ∅ then

V ← V ∪ 〈α, α〉;
else

V ← V ∪ 〈α, β1〉, β1 ∈ S is in direction of steepest descent;

foreach i ∈ [1, . . . , d] do
while ∃ unassigned βi ∈ St−(α) do

while Si+1 ← {γi+1 ∈ St−(α) | #UCF(γ) = 1} 6= ∅ do
V ← V ∪ 〈βi , γi+1〉, βi is the assigned conforming face of γi+1 ∈ Si+1;

if ∃ unassigned βi ∈ St−(α) then
V ← V ∪ 〈βi , βi〉, βi is unassigned;

end

The algorithm processes each vertex independently, first creating a

vertex-edge vector in the direction of steepest descent, restricted to the set

of edges sharing the same segmentation label as the vertex. If no pairing

for the vertex is possible, it is made critical.

Next, simple homotopy type expansions are performed in order of

increasing dimension (where d stands for the dimension of the domain),

again restricting possible candidates for pairing to those sharing the same

segmentation label. For each dimension i, while there exists unassigned i-

cells in the lower star of α, simple homotopy expansions of an unassigned

i-cell with unassigned i + 1 cells are attempted, marking the i-cell critical

when such an expansion is not possible. The test to check if there exist

unassigned i-cells in the lower star of α can be implemented by placing

the i-cells in St−(α) in a list, whose size is typically bounded by a small

constant. The output is guaranteed to produce a discrete gradient vector

field, since all pairings are restricted to the lower star of a vertex and a

homotopy expansion is only performed when all faces of the i-cell have

previously been assigned, and the i + 1-cell has only one unassigned face.

These two conditions along with the fact that every cell of the domain

is either paired or marked critical ensure that all V-paths produced are

monotonically decreasing and V is acyclic, hence a discrete gradient vector

field (just as in (RWS11)). Algorithm 3 can be applied to every vertex in

the domain in an embarrassingly parallel manner.

This same kind of modification is also possible for discrete gradient
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construction algorithms other than Robbin’s (GBHP08, GBP12). Over-

all, just as in our ConformingGradient() algorithm, the modifications to

these include checking the segmentation label when assigning the first

vertex-edge gradient vector, and subsequently checking the label when

assigning the higher dimensional vectors during simple homotopy ex-

pansion. Furthermore, slight reorderings may be necessary to remove

spurious critical points. Once the discrete gradient vector field has been

computed, any one of the algorithms for traversal of the discrete gradi-

ent field (GBHP08, RWS11, SN12) can be used to compute the conforming

Morse-Smale complex.

Editable Morse-Smale complexes

The ConformingGradient() algorithm for computing conforming Morse-

Smale complexes can be used to enable editing of Morse-Smale com-

plexes. Editing can be used by domain experts to correct errors when do-

ing feature extraction. For instance, in bio-medical imaging, overlapping

morphological structures, insufficient dye penetration, shadows, and light

diffraction often contribute to poor feature representation during analysis.

In this case, the image data contains insufficient or incorrect information

for an accurate Morse-Smale complex based feature identification. How-

ever, a domain scientist may understand the deficiency and have the inter-

pretation skills necessary to understand what the segmentation should be.

Often, long pipelines of image processing filters are used to prepare im-

age data for semi-automated segmentation, such as deconvolution, noise

removal, color/contrast correction, thresholding, and smoothing. Further-

more, the Morse-Smale complex itself may be simplified and filtered to

extract the desired features. Each stage of this pipeline may depend on

several parameters, each one affecting the accuracy and precision of the

resulting feature identification, when compared to the gold standard of a

domain expert manually identifying features. While most features can be

extracted with such an approach, there may still remain problematic cases.

In such an instance, we allow the user to edit the segmentation iteratively

as part of the analysis pipeline.

Once a Morse-Smale complex has been computed on a d-dimensional

domain, its ascending and descending d-manifolds define an ori-

gin/destination map. Then, reconstructing the Morse-Smale complex

using that map as a constraint with our conforming gradient algorithm

results in the same Morse-Smale complex. However, it is also possible
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to edit the maps prior to the second computation, effectively editing the

reconstructed Morse-Smale complex. The combinatorial nature of the

algorithm guarantees that the result is a valid Morse-Smale complex that

conforms to the new edits. In this following, I restrict the discussion to

two-dimensional images.

Identity map Let V be a discrete gradient vector field computed with

any algorithm on the mesh K and function f̂ . There are many maps I

such that ConformingGradient() produces the exact same discrete gradient

vector field V. Two trivial examples are I(α) = 1 for any cell α, and the

map taking each distinct gradient vector and assigning both cells a their

own label. Such maps are called identity maps. Our approach for editing

the Morse-Smale complex is to generate an identity-like map from the

Morse-Smale complex as described below, allow the user to modify that

map, and then recompute the Morse-Smale complex with the conforming

algorithm.

Termination map We construct the initial map based on the ori-

gin/destination of V-paths in V. In particular, the ascending and de-

scending manifolds of MS( f ) allow us to construct a termination map,

ω : K0,d → S ⊂ Z, that stores a labeling of the destination of each vertex

and d-cell. Let Mn = {α0, α1, ..., αk} be the set of critical vertices, i.e., the

minima. For each minimum αj, we compute the set of vertices belonging

to its ascending d-manifold, and assign those the label j. Symmetrically,

we compute the descending manifolds of critical d-cells, i.e. the max-

ima, and assign all d-cells the same label. Given a Morse-Smale complex

MS( f ) constructed from a discrete gradient field V, the termination map

constructed from its ascending/descending manifolds as described above

is denoted ω f . Note that ω f can be seen a the vertex-based (respectively

face-based) segmentation of the domain induced by the Morse complex of

− f (respectively by the Morse complex of f ).

Boundary map We use ω f to identify those cells in K that are on the

boundaries of ascending/descending d-manifolds. We can extend ω f to

construct a new label map ∂ f over all simplices that encodes the appro-

priate boundary information. In this case, ∂ f : K → {0, 1, 2, 3} and simply

records whether a cell is the boundary of ascending d-manifolds, descend-

ing d-manifolds, both, or neither (as illustrated in Figure 5.4):
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Figure 5.4 – Example of termination maps and boundary map for the vorticity field of the

2D von Kármán street (top left). The Morse-Smale complex of the data is first computed

(top right) to compute the minima (middle, left) and maxima (middle right) termination

maps. The separatrices of the Morse-Smale complex (bottom left) are used to construct

the boundary map (bottom right).

∂ f (α) =


0 if α is not a boundary cell

1 if α is a boundary between ascending d-manifolds

2 if α is a boundary between descending d-manifolds

3 if α is a boundary between both

User edits Given the initial termination map ω f , we allow the user to

modify it directly into ω′f . After each edit, the boundary map ∂′f is re-

computed. Then, the Morse-Smale complex MS( f ′) is computed from

the gradient field produced by ConformingGradient(). If persistence sim-

plification/filtering was used to generate MS( f ), that same level of sim-

plification is performed on MS( f ′). Practically, the difference between

MS( f ) andMS( f ′) is restricted to the region of ∂′f modified by the user.

Note that user edits may force changes to the Morse-Smale complex in

non-trivial ways, such as splitting regions and changing the connectivity.

For edits such as moving the boundaries of regions, critical points are nec-

essarily added when there is no monotonic path that can be found on the

boundary.

An additional simplification rule must be observed to ensure that the

edits are not immediately removed as low-persistence features: a critical

point of MS( f ′) that is a boundary of ω′f but not of ω f can only be can-

celed with another similarly labeled critical point. Figure 5.5 illustrates
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Figure 5.5 – The Morse-Smale complex is computed for a simple example showing dark

blobs on a light background (a). Two overlapping features are identified as part of the

same basin. This Morse-Smale complex generates a termination map (b), that can be

edited by a user (c) to split this region. The edited map is used to generate a new MS

complex (d) with the false negative corrected. Similarly, a light ridge-like structure (e)

is disconnected, resulting in a ridge reconstruction with poor geometric embedding. The

termination map (f) is again edited (g) to reconstruct the desired embedding (h).

this process for two simple examples. In the first (a-d), overlapping fea-

tures cause a false negative to appear, where the finest resolution Morse-

Smale complex image insufficiently segments the domain. The user modi-

fies the termination map ω f , and the complex is regenerated with the false

negative corrected. In the next example (e-h), the geometric embedding

of an arc of the Morse-Smale complex is fixed by modifying the spatial

extents of a label in ω′f .

A Histological Example Applying Morse-Smale complexes for the auto-

mated segmentation of nuclei in phenotypic analysis of histological sec-

tions is an active area of research (SCD13). We apply a straightforward

approach, identifying nuclei as simplified basins in a processed image.

However, the basins identified often may not sufficiently segment the do-

main to separate all the nuclei. Our goal is to remove all false negatives

using a semi-automated approach. As Figure 5.6 illustrates, we apply

grayscale conversion, thresholding, and smoothing to the initial image

data, and compute basins of the Morse-Smale complex simplified to some

persistence threshold.

This pipeline results in some false negatives where two or more nuclei
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Figure 5.6 – A section of tissue is imaged in a histology study. We apply grayscale

conversion, thresholding, and smoothing to generate an input for an initial MS complex

computation. The termination map is edited to match a domain expert’s labeling (red

regions, bottom left), and a complex is regenerated that has no false negatives. The green

circle highlights a region that is corrected through editing.
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overlap, as compared to a labeling by a domain expert (WHS∗12). The

computed Morse-Smale complex segmentation is used to generate a ter-

mination map ω f , which is edited to match the input of a domain expert.

The boundary ∂′f is computed from ω′f , and finally the complex MS( f ′)

is recomputed and simplified, with the new features present. While the

Morse-Smale complex that results contains no false negatives, it still con-

tains false positives. However, as it is still a valid Morse-Smale complex,

further filtering/simplification is possible to account for such errors. Hav-

ing every nuclei in its own basin makes it later possible to identify which

basins contain nuclei and which do not, for instance, by applying standard

filtering/simplification pipelines.

Concluding remarks

This sub-section introduced an algorithm to construct Morse-Smale com-

plexes that conform with a user-supplied segmentation. An investigation

of the breadth of interactions that must be supported and user interface

requirements to make such an approach a viable component of the an-

alyst’s toolbox is future work. Additionally, an interesting direction for

future work is to restrict the (re-)computation necessary for a local region

of influence around the modified segmentation, to enable instantaneous

updates of the Morse-Smale complex. Furthermore, editing may intro-

duce non-local effects both in the feature generation and simplification

process, and fully exploring these in a robust manner would be a valuable

future contribution.

Finally, another application area for future work involves robust mesh

generation. The Morse-Smale complex has started to emerge as vehicle for

surface meshing (DBG∗06, HZM∗08). We view conforming Morse-Smale

complexes as a first step towards utilizing Morse-Smale complexes for

volumetric mesh generation. User edits with a rich segmentation inter-

face could drive the repair of mesh artifacts interactively, similar to the

approach presented in the following sub-section.

5.2.2 Reeb graph editing

In Computer Graphics, surface quadrangulation representations are often

preferred over triangulations for tasks such as texture mapping or ani-

mation. Quadrangulations can be obtained by partitioning the surface in

a set of quadrangular charts (which can be further refined as desired).

However, end-users need to control the overall layout and topology of this
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partitioning (chart number and boundary alignment, position, valence and

number of extraordinary vertices) as it can affect the output animation.

In this subsection, I describe an approach for the semi-automatic seg-

mentation of surfaces into quadrangular charts, based on editing mech-

anisms of the Reeb graph. Given an initial segmentation automatically

generated from the pre-image of R( f ) through φ, we introduce atomic

operations for the control of the number of charts, the geometrical con-

trol of their boundaries, as well as the robust control of the number and

valence of chart corners. Each of these operations is accompanied with

an intuitive user interface and our core algorithms perform edits at in-

teractive rates, enabling users to constructively enhance the quadrangular

segmentation of the surface for quad-meshing purposes (further described

in the next chapter).

Harmonic scalar fields

In order to control the geometry of the boundaries of the quadrangular

charts, we will consider as an input scalar field the solution to an op-

timization process, integrating user constraints for the definition of the

geometry of the level sets. Moreover, since it is often desirable in practice

to construct quadrangular charts with smooth boundaries, we will add a

regularization term in the optimization.

The solution to the Laplace equation under Dirichlet boundary condi-

tions is a good candidate for such requirements, since it smoothly interpo-

lates sparse constraints on the entire domain. Given a finite set of extrema

constraints C along with corresponding target values, this equation is de-

fined as follows:

f (ci) = fci ∀ci ∈ C (5.1)

∆ f (v) = 0 ∀v /∈ C (5.2)

where ∆ stands for a discretization of the Laplace-Beltrami operator on

surfaces. The scalar fields being solutions of this equation are called har-

monic scalar fields.

In practice, to compute such harmonic scalar fields, the Laplace-

Beltrami operator is discretized using cotangent weights (PP93), which

leads to a symmetric positive-definite sparse matrix L = W − D whose

elements wij of W are defined as:

wij =

{
− 1

2 (cot αij + cot βij) if edge [i, j] ∈ M
0 otherwise

(5.3)
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Figure 5.7 – Harmonic scalar field (left, extrema constraints are located on the ears,

top, and at the bottom) and its Reeb graph (right) as well as its pre-image through φ

(transparent chart colors, right).

where αij and βij are opposite angles to edge eij and D is a diagonal matrix

with elements dii given by row sums of W.

We make use of the penalty method to impose constraints to the linear

system derived from equation (5.2). Consider C, the set of indices of con-

strained vertices, then the harmonic scalar field is obtained by solving the

linear system,

(L + P) f = Pb, (5.4)

where P is a diagonal matrix with non-zero entries pii = α only if i ∈ C

and α is the penalty weight (α = 108 (XZCOX09)). Constrained values are

set within the vector b,

bi =

 fci , ∀ci ∈ C

0, ∀v /∈ C
(5.5)

where fci is the desired scalar value assigned to vertex ci. The main advan-

tage of using the penalty method to impose constraints is that supernodal

schemes (DH09) can be used to update (and downdate) the Cholesky fa-

torization, making it possible to include and remove constraints efficiently

(XZCOX09), at interactive rates. Figure 5.7 shows an example of harmonic

scalar field along with its corresponding Reeb graph.

In practice, the set of extrema constraints can be either provided by the
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Figure 5.8 – Our parameterization strategy maps the boundaries of the Reeb charts to

the unit square by defining UV Dirichlet boundary conditions within the Laplace system.

Open annuli are cut into quadrangular charts by an integral line of f .

user, or selected as extrema of relevant functions computed automatically,

such as the integral of the geodesic distance function (HSKK01).

Reeb-graph based surface segmentation and parameterization

Given a closed PL 2-manifoldM embedded in R3, a Reeb chart is the pre-

image by φ of the interior of a 1-simplex of R( f ). By construction, Reeb

charts are continuous pilings of closed 1-dimensional contours. Since they

are the pre-image of the interior of 1-simplices, Reeb charts do not include

critical contours and are thus open sets with the topology of an open

annulus (a connected genus zero surface, with two boundary components

excluded). Note that a boundary component collapses to a point if a 1-

simplex is linked to the image through φ of an extremum. Because Reeb

charts are constructed from the regular contours of f , their definition does

not require f to be strictly PL Morse (i.e. degenerate saddles are allowed).

Given the segmentation of the surface into Reeb charts, the Reeb atlas

is defined as the union of the charts with respective local parameteriza-

tions. Because Reeb charts have a controlled topology, they are robustly,
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Operation Add Chart Del Chart Move Bound. Add Bound. Saddle Align. Frac. Poles Frac. Saddles

Figure Fig. 5.10 (top) Fig. 5.10 (top) Fig. 5.10 (mid.) Fig. 5.10 (bot.) Fig. 5.11 Fig. 5.12 Fig. 5.13

Interaction Click Click Drag Click Clicks Clicks Clicks + Drag

Table 5.1 – Summary list of the Reeb atlas editing operations.

easily and efficiently parameterized with a generic strategy, which will be

instrumental for quadrangulation purposes.

Each Reeb chart Mi of M is built by duplicating the triangles of M
that fully map to the interior of a 1-simplex σi via φ. Boundary triangles,

intersected by the critical contours whose image by φ is a face of σi, are

also inserted intoMi, illustrated as grey triangles in Figure 5.7 (right). In

order to obtain smooth boundary components for the charts, the boundary

triangles are shrunk such that their vertices being outside of the chart get

snapped along the boundary critical contour (by sliding them along an

incoming edge crossing the contour).

A parameterization maps the open annulus Mi to the unit square

by solving two harmonic functions with Dirichlet boundary conditions

(Fig. 5.8) using the solver presented previously. The field U : Mi → [0, 1]

is computed to align with the level lines of f by constraining the boundary

vertices of Mi, projected to the two critical contours, to either U = 0 or

U = 1 (Fig. 5.8). The orthogonal field V : Mi → [0, 1] is computed by

tracing a cutting integral line along the mesh edges of Mi guided by the

gradient of U, turning the annulus into a quadrangular chart with disc

topology. The vertices of the cutting edges are duplicated and assigned

values, V = 0 and V = 1, to map the boundary ofMi to the unit square.

Each Reeb chart Mi mapping through φ to a 1-simplex σi of R( f )

having as face the image by φ of an extremum of f (Fig. 5.8) are parame-

terized differently. The boundary triangles adjacent to the extremum are

included within Mi so that Mi has a single boundary component and is

homeomorphic to a disc. The boundary vertices are segmented into four

contiguous polylines and assigned values mapping the boundary to the

unit square.

At this stage, the Reeb atlas represents a coarse quadrangular segmen-

tation of the surface. Moreover, each Reeb chart is equipped with its own

local parameterization to the unit square, enabling further quadrangular

subdivisions. Note that saddles of f can be seen as extraordinary vertices

in this segmentation (i.e. vertices whose valence is different from 4).



124 Chapter 5. Interaction

Figure 5.9 – Editing a chart boundary by saddle contour manipulation: the original level-

set curve (a) is modified through the critical contour widget (b) where the mesh-plane

intersection describes the new contour geometry (c). Saddle triangles are constrained (d)

to ensure the scalar field respects the new critical contours (e)

Editing operations

In the following, I describe a set of atomic operations (detailed in table 5.1)

on the Reeb graphs for the interactive control of the initial quadrangular

segmentation provided by the Reeb atlas.

Chart boundary The Reeb chart boundaries are defined by critical con-

tours of f . While the relocation of minima and maxima is well understood,

consisting of removing the original constraint and replacing it with a new

one at a different location, moving saddle contours requires a bit more

machinery but it is however mandatory to edit the geometry of charts’

boundaries.

For each saddle contour, additional constraints are added to the

Laplace system at the vertices of saddle triangles (triangles intersected by

the critical contour) to ensure that the scalar field level-sets respect the

user designed geometry. Assume that the user modified the geometry

of a saddle contour with a scalar value sc so as to intersect the triangle

t = {p0, p1, p2} on edges e0 = p0 p1 and e2 = p2 p0 (Fig. 5.9). The intersec-

tion points pin = p0 + α0(p1 − p0) and pout = p2 + α1(p0 − p2) and scalar

values sin = s0 + α0(s1 − s0) and sout = s2 + α1(s0 − s2), where s0, s1, s2
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Figure 5.10 – Global impact of Reeb atlas editing operations. Reeb charts whose tri-

angle list changes after the operation are transparent. Top: chart insertion and deletion

(through insertion and deletion of extrema). Middle: contour displacement. Bottom:

chart subdivision.

are associated with the vertices of t, assist in the definition of vertex con-

straints. The vertex pi of t is projected onto the segment pin pout yielding

the point p′i with a scalar value s′i. The scalar constraint assigned to pi for

t is s̃i = sc + (si − s′i). The final constraint of each vertex is averaged with

values of adjacent saddle triangles. This novel constraint computation en-

ables strict control of the contour of f , aligning to the user’s designed

polyline.

Note that initially, and also after each editing operation, all the saddle

contours of f are constrained using the above scheme (even if the con-

tours are not displaced). Then, the effects of the editing operations are

localized to the charts of interest. For instance, when displacing a saddle

contour at the boundary of a chart of interest, the other boundaries remain

in position and conserve their f values. Then to guarantee that the saddle

contour displacement does not alter the topology of f , our interface dis-

cards any interaction that generates a contour which is not a closed loop,

or that makes the contour overlap another saddle contour or sweep an
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Figure 5.11 – Thin Reeb charts (left and top) result where multiple saddles have nearly

equivalent scalar values. Our global editing operations support the geometric control

of the contours, linking the saddle vertices and removing thin Reeb charts (right and

bottom).

extremum. Finally, note that after each editing operation, the Reeb graph

is recomputed globally. Then, the list of Reeb charts which need an up-

date of their individual triangle list is tracked based on the lists of regular

vertices of the arcs of the Reeb graph (as described in Figure 5.10, center).

Chart number The number of charts can also be edited by the user

through a set of atomic operations for the insertion, deletion, subdivision

and merging of Reeb charts.

As illustrated in Figure 5.10 (top), disc-like Reeb charts can be inserted

or deleted by inserting or deleting extrema constraints from the Dirichlet

boundary conditions.

Reeb charts can also be subdivided. In particular, because the Reeb

chart is defined as a collection of contours, splitting a chart into two can

be achieved by flagging a particular contour (i.e. clicking on a vertex,

Figure 5.10, bottom) and by construction each child chart maintains the

topological guarantees of the Reeb atlas segmentation. Reeb chart splitting

facilitates alignment of the scalar field, the charts’ parameterizations and

consequently of the final quadrangulation to surface features.

When the scalar field f admits a succession of nearby saddles (Fig-

ure 5.11), it may be desirable to align the associated critical contours. In

effect, this functionality coarsens the Reeb atlas by removing thin Reeb

charts to align extraordinary vertices in the final quad mesh. The atlas

coarsening maintains the total number of saddle vertices while decreas-
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Figure 5.12 – Fractional poles: a polar vertex (left) split into 2 half- poles (val. 2, middle)

and 4 quarter-poles (val. 3, right).

ing the number of saddle contours (multiple critical points are enforced

to share the same function value, forcing f not to be a PL Morse scalar

field), yet the Reeb charts remain well defined. Aligning multiple saddles

(Figure 5.11) is achieved interactively by first deleting the critical contours

to align. Next, the user clicks on pairs of saddles to be connected with au-

tomated mesh traversals (shortest paths) providing initial curve segments.

Then, the user can further re-orient them with the critical contour widget

(the aligned curves are then constrained as discussed previously).

Chart corners The Reeb atlas provides a coarse quadrangular segmenta-

tion that can be refined by contouring the parameterization of each Reeb

charts and locally solving potential t-junctions as further described in

Chapter 7. With this strategy, the corners of each Reeb chart will yield ex-

traordinary vertices (i.e. with a valence different from 4). Here I describe

how such vertices can be controlled with atomic edits with the notion of

fractional singularity.

When a boundary component of a Reeb chart is an extremum vertex,

parameterizing the chart with a cutting streamline (as an open annulus)

generates a polar singularity that leads to triangular elements around a

high valence extraordinary vertex (Fig. 5.12, left). To guarantee the gener-

ation of a quad-only output, we use the notion of fractional singularity. In

particular, our default parameterization strategy for disc charts splits a po-

lar singularity into quarter poles, where the resulting quad mesh contains

4 valence 3 vertices (Fig. 5.12, right).

An alternative proposed to the user is to split the polar singularity

into 2 half-poles, constraining a sequence of mesh edges with constant

min/max f values (0 or 1); then, the chart is parameterized with a cutting

streamline (Fig. 5.12, middle). This configuration corresponds to the con-

cept of non-isolated critical points in the smooth setting. We use Simulation



128 Chapter 5. Interaction

Figure 5.13 – Fractional saddles: a saddle vertex (val. 8, left) split into 2 half-saddles

(val. 6, middle) and 4 quarter-saddles (val. 5, right).

of Simplicity (SoS) (EM90) in the PL setting to maintain a consistent com-

binatorial representation of f . The resulting quad mesh has 2 valence-2

extraordinary vertices at the endpoints of the extremum segment.

In the spirit of handling fractional polar singularities, we design frac-

tional saddle singularities within the scalar field design. Saddle vertices

correspond to extraordinary vertices within the final quad mesh (Fig. 5.13,

left). We provide a set of atomic editing operations that enable the user

to redistribute easily the high valency of saddles with the notions of half-

and quarter-saddles. While there exists multiple possible combinations of

adjacent Reeb chart parameterization configurations, we abbreviate this

discussion to the example shown in Fig. 5.13. A non-degenerate saddle

contour is a set of two closed curves admitting exactly one common point.

Half-saddle splitting is supported by modifying the geometry of the sad-

dle contour to be described, for example, with two closed curves linked by

a middle segment that is aligned to the edges of the mesh. The half-saddles

are defined at the intersection of the middle segment and the two closed

curves (Fig. 5.13, middle).

To design half-saddle configurations (Fig. 5.13, middle), the user

deletes the original saddle contours and vertex, then initiates the trac-

ing of two contours from manually chosen vertices. The middle segment

is automatically computed as the shortest path defined along mesh edges

between the two points. User-defined half-saddle contours can be geomet-

rically edited via the critical contour widget to align to surface features.

The network of critical contours defining the half-saddle is assigned a sin-

gle constraint isovalue. Note, the middle segment relates to the notion of

non-isolated critical point in the smooth setting, handled in the PL setting

with SoS. Splitting a saddle reduces the valence of the related vertex by

redistributing it among the multiple, created extraordinary vertices. The

quarter-saddle configuration (Fig. 5.13, right) further supports this obser-
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Figure 5.14 – Preliminary quadrangulation results obtained after Reeb atlas editing and

a direct contouring of the Reeb chart parameterizations.

vation. Quarter saddles are designed by first deleting the original saddle

contour and vertex. Then the user clicks on a reference vertex to extract its

isocontour. Three other reference vertices are selected along this isocon-

tour and pairs of reference vertices are connected through shortest path

computations (Fig. 5.13, right). Finally, an extremum is inserted at the

location of the original saddle to maintain a valid field topology. The

user can use the critical contour widget to further align the contour (con-

strained as discussed previously.

Preliminary results Figure 5.14 illustrates a few preliminary quadran-

gulation results obtained after Reeb atlas editing and a direct contouring

of the Reeb chart parameterization. In particular, the hand example (cen-

ter, top) has been obtained after saddle alignment and chart subdivision at

the finger tips. The torus example (bottom) illustrates the effects of frac-

tional singularity editing (left: before, right: after). In particular, due to

our default parameterization method for discs, splitting polar vertices into

quarter-poles, the construction of half-saddles can lead to the removal of

pairs of extraordinary vertices in the quad mesh. In particular, the singu-
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larities of min/split-saddle and merge-saddle/max Reeb charts are removed.

On the torus examples, all singularities can be classified as these types,

resulting in a completely regular quadrangulation (right). The bitorus ex-

ample (top right) further exemplifies fractional saddle editing.

Concluding remarks In this subsection, I described an interactive frame-

work for the complete editing of the geometry and topology of a surface

segmentation derived from the Reeb graph, with a specific application to

surface quadrangulation. Based on these algorithms, this latter application

will be further discussed in Chapter 7, illustrating another type of appli-

cations of topological data analysis beyond scientific visualization. In that

latter context, our Reeb atlas interactive framework opens new possibili-

ties to incorporate users knowledge into segmentation tasks, as described

in the previous subsection with the Morse-Smale complex but this time

for segmentation tasks where features of interest align with level sets.
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This chapter describes my contributions for the quantitative analysis

of scientific data based on topological methods. Starting from pre-

cise application problems, I describe how these algorithms can be adapted

to conduct interactive data exploration and quantitative analysis. First, I

describe how the split tree can be used to extract, enumerate and track

frames through time in turbulent combustion simulations. While this ap-

proach is accompanied with an exploration user interface capable of track-

ing individual flames, I describe how this approach can also be used to de-

rive quantitative measurements helping in the interpretation of the simu-

lation. Second, I describe how the segmentation capabilities of the join tree

and the Morse-Smale complex can be combined to analyze covalent and

non-covalent interactions in molecular systems. Such an approach enables

not only to robustly extract these features, but also the atoms involved

in each localized interaction. For simple systems, our analysis corrobo-

rates the observations made by the chemists while it provides new visual

insights for larger molecular systems. This chapter presents parts of the

results described in the following papers: (BWT∗09, BWT∗11, GABCG∗14).

131





6.1. Exploration of turbulent combustion simulations 133

(a) (b) (c) (d) (e)

Figure 6.1 – Turbulent combustion applicative context (from left to right): (a) Photo of

a typical laboratory low-swirl nozzle; (b) Photo of a lean premixed CH4 low-swirl flame;

(c) Experimental Mie scattering image of a lean premixed H2 flame; (d) Planar laser-

induced fluorescence data imaging the OH concentration in a lean premixed H2 flame;

(e) Rendering of the burning cells of the SwirlH2 simulation data. The cells form a bowl

shaped structure with the arrow indicating the direction of the fuel stream.

6.1 Exploration of turbulent combustion simulations

In this section, I describe an analysis framework for large-scale time vary-

ing combustion simulations based on hierarchical split trees. This data

abstraction enables a massive data reduction (two orders of magnitude)

while still abstracting the relevant information for the representation of

the features of interest. This reduction enabled the design of a user in-

terface for the interactive exploration of the features of the simulation,

yielding new visual insights later confirmed by quantitative analysis.

6.1.1 Applicative problem

Low-swirl injectors (BC95, POB∗07, Che95a, NPB∗07, MC08) are emerging

as an important new combustion technology. In particular, such devices

can support a lean hydrogen-air flame that has the potential to dramat-

ically reduce pollutant emissions in transportation systems and turbines

designed for stationary power generation. However, hydrogen flames are

highly susceptible to various fluid-dynamical and combustion instabili-

ties, making them difficult to design and optimize. Due to these instabili-

ties, the flame tends to arrange itself naturally in localized cells of intense

burning that are separated by regions of complete flame extinction.

Fig. 6.1(a) shows the detail of a low-swirl nozzle. The annular vanes

inside the nozzle throat generate a swirling component in the fuel stream.

Above the nozzle the resulting flow-divergence provides a quasi-steady

aerodynamic mechanism to anchor a turbulent flame. Fig. 6.1(b) illustrates

such a flame for a lean premixed CH4-air mixture (the illustration shows a

methane flame since H2 flames do not emit light in the visible spectrum).

Figs. 6.1(c),6.1(d) show typical experimental data from laboratory low-
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swirl, lean H2-air flames. Such data is used to extract the mean location

and geometrical structure of instantaneous flame profiles. The images

indicate highly wrinkled flame surfaces that respond in a complex way to

turbulent structures and cellular patterns in the inlet flow-field.

Existing approaches to analyze the dynamics of flames, including most

standard experimental diagnostic techniques, assume that the flame is a

connected interface that separates the cold fuel from hot combustion prod-

ucts. In cellular hydrogen-air flames, many of the basic definitions break

down: there is no connected interface between the fuel and products, and

in fact there is no concrete notion of a “progress variable” that can be used

to normalize the progress of the combustion reactions through the flame.

As a consequence, development of models for cellular flames requires a

new paradigm of flame analysis.

The computational model used to generate the simulation results ex-

plored in this study incorporates a detailed description of the chemical

kinetics and molecular transport, thus enabling a detailed investigation of

the interaction between the turbulent flow field and the combustion chem-

istry. As in the physical device, the low-swirl burner simulation achieves

a statistically stationary flame in a time-dependent turbulent flow field

above the inlet nozzle. Results from the simulation are in the form of

a sequence of snapshots in time of the state data. We considered two

simulations (labeled SwirlH2 and SwirlH2Fast) having different flow pro-

files. The SwirlH2Fast case has a mean fueling rate of 2.5 times that of

the SwirlH2 case. In the simulations, the time-dependent integrated in-

ventory of fuel in the domain is used to monitor the developing flame.

Once a quasi-steady configuration is obtained, snapshots were collected

at intervals of approximately 2ms and 1ms for SwirlH2 and SwirlH2Fast,

respectively and used for the analysis here. The data sets consist of 332

and 284 snapshots for the slow and fast version, respectively, at an effective

resolution of 10243. The resulting snapshots are roughly 12–20 Gigabytes

in size totaling a combined 8.4 Terabytes of raw data.

The main features of interest are the intensely burning cells defined by

a threshold on the local fuel consumption rate. All regions with a local

fuel consumption rate above this threshold are tagged as “burning.” Note,

however, that no single “correct” threshold exists, requiring that we char-

acterize the influence of this threshold value on the resulting diagnostics.

However, previous approaches for the analysis of this type of data relied

on the identification of a single consumption rate threshold and no ap-

proach was available to interactively explore through time and character-
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(a) (b) (c) (d) (e) (f) (g)

Figure 6.2 – (a)-(d) Constructing a split tree and corresponding segmentation by record-

ing the merging of contours as the function value is swept top-to-bottom through the

function range. (e) The segmentation for a particular threshold can be constructed by

cutting the split tree at the threshold, ignoring all pieces below the threshold and treating

each remaining (sub-)tree as a cell. (f) The segmentation of (e) constructed by simplify-

ing all saddles above the threshold. (g) The split tree of (d) augmented by splitting all

1-simplices spanning more than a given range.

ize quantitatively the geometry of burning flames for interactively defined

thresholds. The work described in this section addresses this issue.

6.1.2 Algorithm

The cellular regions of intense burning are identified by thresholding the

local consumption rate and we work directly with the resulting three-

dimensional, time-dependent regions. The process may be regarded as a

generalized subsetting strategy, whereby subregions of a computational

result may be sampled, explored and categorized in terms of a volume

of space with an arbitrary application-specific definition for its boundary.

Since we are interested in regions of high fuel consumption we have iden-

tified split trees which encode the topology of sur-level sets, see Chapter 3,

as appropriate data structure.

Data segmentation

As discussed in Section 3.2.3, the Reeb graph and its variants (the join,

split and contour trees) induce data segmentations with boundaries align-

ing with level sets, by considering the pre-image through φ of each of

their 1-simplices. In this application, since burning flames are defined as

connected components of space whose combustion rate is higher than a

queried threshold t ∈ R, we follow and extend this segmentation strategy

in the case of the split tree.

Given a threshold, t, for the fuel consumption rate f :M→ R, we de-

termine the corresponding burning cells by conceptually cutting the split

tree of f at t creating a forest of trees. Each individual tree represents

one connected burning cell, see Fig. 6.2(e). In practice, rather than cut-
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ting the split tree and traversing sub-trees, the same information is stored

more efficiently as a simplification sequence. A split tree is simplified by

successively merging leaf branches with their sibling branch. We order

these simplifications by decreasing function value of the merge saddles

and store the resulting simplification sequence. In this framework, burn-

ing cells at threshold t are defined as sets of all leaf branches with function

value greater than or equal to t of the tree simplified to t, see Figure 6.2(f).

Storing only the split tree, the scheme described above allows us to de-

termine the number of burning cells for all possible thresholds. However,

in practice we also need an accurate representation of cell geometry and

of any number of additional attributes such as volume (see below). Using

only the original segmentation this is difficult since we must exclude the

lower portions of branches intersecting the threshold. As the distribution

of branch attributes can, in general, not be predicted, excluding a portion

of a branch would require us to access the original data at significant cost.

Instead, we augment the split tree with additional valence two nodes by

splitting all branches longer than some threshold, as seen in Fig. 6.2(g).

Furthermore, we also compute a number of additional attributes for each

branch. For example, we compute the volume of each branch as well as a

number of k-th order moments such as means and variances for any vari-

able of interest (not necessarily just f ). This splitting is performed with

little overhead during the initial computation and allows us to approxi-

mate cutting at any threshold with a pre-defined accuracy. It is important

to note that this approximation only affects the geometry of the segments

and their attributes but not their structure. We are guaranteed to not er-

roneously merge or split cells due to the approximation.

The augmented split trees form the fundamental data structure in our

framework, storing the one-parameter family of possible segmentations

along with an arbitrary number of attributes. For efficient access during

the visualization we store the segmentation information, a list of vertices

per cell, separately.

Feature tracking

Given the data segmentations for all time steps, we track over time fea-

tures defined by a given static threshold. We track features by spatial

overlap which appears to be adequate for our purposes. However, since

we have a complete description of features the framework can be easily

extended to any number of more sophisticated techniques. To determine
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Figure 6.3 – Example of burning cells being tracked over time (in red). The graph

shows a small portion of the tracking graph for the SwirlH2 data set spanning time steps

1880 through 1895. The embedded screen shots show the corresponding segmentation as

different nodes are selected in the graph. Over the course of these time steps the large cell

represented by the left most node slow sheds smaller cells until it finally breaks apart into

three independent pieces.

the potential overlap we load the split trees of two consecutive time-steps

and adapt them to the given threshold. We then traverse the vertices of

both segmentations in parallel determining their active segmentation in-

dex and if both vertices are above the threshold add a (tracking graph)

arc between the corresponding features. The active segmentation index is

computed as the segmentation index stored in the file adapted to thresh-

old simplification.

Due to the large number of timesteps involved, creating a tracking

graph cannot yet be performed interactively. Furthermore, creating a lay-

out for a given graph, even using state of the art tools, remains too slow

for interactive techniques. However, it is important to point out that the

tracking graphs are created from the pre-computed segmentations and

not the original data so all processing involved can easily be handled by a

standard desktop computer.

For regular grids the tracking is by design a streaming process. Each

vertex is treated independently and since the vertices are in the same or-

der for both time steps only two consecutive split trees must be kept in

memory. For each time interval we dump the partial tracking graph to

disk to be assembled at the end.

An example of features getting tracked through time is shown in Fig-

ure 6.3. The figure shows a small portion of the tracking graph for the

SwirlH2 data set for time steps 1880 through 1895. The embedded screen

shots show the main segmentation display when the indicated node has

been selected.
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Figure 6.4 – Determining the tracking graph simplification threshold: The graphs show

the number of nodes remaining in the tracking graphs vs. the simplification threshold for

the restricted portions of the SwirH2 (left) and SwirlH2Fast (right) data set.

Tracking graph simplification

As illustrated in Figure 6.3, the tracking graphs can become highly com-

plex and difficult to understand. Furthermore, they contain artifacts of

the thresholding such as tiny features existing for only one or very few

time steps. To reduce the graph complexity and eliminate some of the ar-

tifacts we simplify the tracking graphs by removing all valence zero nodes

as well as nodes with a volume smaller than a given threshold (in prac-

tice we use the number of vertices corresponding to each node as a mea-

sure of volume). Such simplification significantly streamlines the tracking

graph by suppressing unnecessary details. In order to avoid disconnecting

segments above the volume threshold and thus structurally changing the

tracking graph we restrict the simplification to successively removing leafs

below the volume threshold. To choose an adequate volume threshold we

study how the number of nodes in the tracking graph changes as we in-

crease the volume threshold, see Fig. 6.4. These plots indicate a separation

between noise and features. To reduce the complexity of the graphs and

the cost of the layout we chose values on the upper range of the suggested

noise level for simplification. All examples shown here use a threshold at

around 100 vertices.

6.1.3 Results

The data reduction with our hierarchical split tree representation was per-

formed in parallel on an SGI Altix 350, with 32 Itanium-2, 1.4 GHz proces-

sors using one processor per time step. The interactive exploration of the

data and its quantitative analysis was carried out on a commodity desk-

top computer. For a single representative time step, the computation of
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the hierarchical split tree and corresponding segmentation took 1067 and

2684 seconds for the SwirlH2 and SwirlH2Fast data-sets respectively (ex-

cluding I/O). The hierarchical split trees pre-process the data with respect

to one of the most important aspects of the data (the burning cells) and

store all additional information in accordance with this segmentation, al-

lowing for an interactive post-exploration. Even for the largest data sets,

the resulting split trees consist of only around 6Mb ASCII information per

time step and their corresponding segmentation to 144Mb, compared to

several Gigabytes of raw data. In fact, the trees are small enough to be

loaded interactively from disk. Using standard gzip compression, these

reduce to roughly 70Mb. Overall, for all time-steps, our data representa-

tion roughly required 13Gb and 20Gb of gzipped files for the SwirlH2 and

SwirlH2Fast case, respectively. Given the 3.9 and 4.5 Terabytes of orig-

inal data, this corresponds to a data reduction of more than two orders

of magnitude, while still providing greater flexibility in the segmentation

and selection than possible using standard techniques based on isosurfac-

ing for instance.

Interactive exploration interface

The primary focus of this work was to provide the application scientists

with the ability to comfortably explore their data in a manner meaning-

ful in their particular problem space. For example, allowing the user to

explore easily variables conditioned on the extracted features provides a

simple way to understand whether various conditional statistics may pro-

vide new insights into the data.

Graph display Our user interface presents a fully linked system in

which the user can explore the tracking graph, the corresponding seg-

mentation, and the conditional statistics simultaneously with on-demand

data loading, as illustrated in Figure 6.5. One of our two main windows

(V) is dedicated to the display of the tracking graph (layout with dot.) To

reduce the visual clutter, only the non-valence two nodes of the tracking

graph are shown while sequences of valence two nodes are indicated by

unbroken arcs. For exploration we typically use the cell volume (repre-

sented by the number of vertices within the cell) to highlight larger cells.

To display the graph, we load its geometry into OpenGL, which allows

us to draw even the largest graphs fully interactively. The graph display

not only provides a visualization of the graph but the user can also select
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Figure 6.5 – Illustration of the different components of the user interface. (I) 3D display

of the segmentation including a slider to select the fuel consumption threshold (II); (III)

the interface to determine the number of in-memory time steps; (IV) the button to load

the geometry; (V) interactive display of the tracking graph. Selecting node in either the

3D viewer or the graph display causes the corresponding cell to be highlighted (VI) and

its attribute information to be displayed in the info window (VII). The last window (VIII)

provides the ability to sub-select segments based on attribute values.

nodes or arcs. When selecting an arc, the system automatically selects the

closest valence two node along this arc. A selection triggers two actions.

First, the system loads the split tree of the corresponding time step and,

if desired, a number of neighboring time steps. Since split trees are com-

paratively small, the trees are loaded interactively from disk without any

caching or other acceleration mechanism. Second, the segment id and all

its corresponding attribute information are extracted from the split tree

and displayed in the info window (VII).

Note that the current threshold of the split tree is driven by the seg-

mentation display (slider II), while the time tracking graph uses a single

fixed threshold. Thus, during selection, the tracking graph and the split

tree can use different thresholds, in which case the system automatically

adapts the selection: If the split tree threshold is smaller (bigger cells) the

segment containing the picked one is selected; If the split tree threshold

is larger (smaller cells) the information for the appropriate sub-segment

is shown. Finally, if the node the user has selected corresponds to any

segment currently shown, this segment will be highlighted (VI).

Segmentation Display The other main window (I) displays the segmen-

tation and allows the user to vary the threshold (II) and pick the number

of in-memory time steps (III). Individual cells are displayed using one of

eleven colors at random, reserving bright-red for highlighted cells.

Similar to the graph display, the segmentation view supports selection
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(a) (b) (c) (d)

Figure 6.6 – Burning cells in the center of the SwirlH2 data at time step 1500 (ran-

domly colored) using fuel consumption thresholds of 4.0 (a), 5.0 (b), 6.0 (c) and 7.0 (d)

kgH2 /m3s respectively.

(a) (b) (c) (d)

Figure 6.7 – Burning cells in the center of the SwirlH2Fast data at time step 3000

(randomly colored) using fuel consumption thresholds of 6.0 (a), 7.0 (b), 8.0 (c) and 9.0

(d) kgH2 /m3s respectively.

of individual segments displaying their information in a separate win-

dow (VII). Finally, we provide an additional window (VIII) that makes it

possible to sub-select segments based on the various attributes. Overall,

the system supports to exploring the entire time series of a combustion

simulation at arbitrary thresholds and using conditional selection criteria.

Quantitative analysis

The flexible, one-parameter families of segmentations generated by our

framework and their corresponding statistical information enable new in-

depth analysis capabilities in studying turbulent flames. I report in this

section quantitative analysis scenario derived from our framework as well

as the preliminary insights our collaboration partners gained with these.

The main significant observation is that the flames in the low-swirl

configuration seem to burn in two different modes. Overall, the burning

cells create a bowl shaped structure centered above the burner. Around

the center of this bowl, cells appear to behave much like the idealized

flames studied in (DBB∗09). On the outside, however, the flames burn

more chaotically in smaller, irregularly shape regions. The behavior of

these fringe cells is very unlike that of the idealized flames and it is not yet

clear how to model them. Therefore, the initial analysis has focused on

the center of the bowl.
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(a) (b)

Figure 6.8 – Cumulative density functions of the distributions of cell sizes for various fuel

consumption thresholds for the SwirlH2 (a) and SwirlH2Fast (b) data sets. Unlike the

idealized flame (DBB∗09), these distributions indicate few large cells for lower thresholds

than the expected many small cells.

Our interactive exploration user interface helped our collaboration

partners identifying a better and refined fuel consumption rate than used

in previous studies. In particular, the threshold 2.6kgH2 /m3s used previ-

ously exhibited under segmentations yielding only one large region for

the SwirlH2Fast data-set. Our interface, with its visual exploration and

statistical measure capabilities, helped them refine these thresholds to

5kgH2 /m3s and 8kgH2 /m3s for the SwirlH2 and the SwirlH2Fast data-sets

respectively (Figures 6.6 and 6.7).

To confirm these insights, we generated the time tracking graphs for

various fuel consumption thresholds and reported the distribution of the

size of the burning cells maintained in the graph in Figure 6.8. As sug-

gested by the visualization, the distributions show a markedly different

behavior for lower fuel consumption thresholds. For small thresholds the

distributions become exponential indicating a small number of larger cells

rather than the logarithmic behavior seen in previous studies. However, as

the threshold increases, the distributions continuously change to a loga-

rithmic shape. Combining the visual observations of Fig. 6.6 and 6.7 with

the statistical results shown in Fig. 6.8 might suggest that the swirling

flames behave similar to the idealized flames but at much higher fuel con-

sumption rates.

Overall, it appears that the low-swirling flames are in a substantially

different regime than the idealized flames. Our interactive framework

coupled with the data analysis made possible by using augmented hierar-

chical split trees has been instrumental in trying to better understand the

underlying dynamics controlling the low-swirling flames. It has open sev-
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eral new research directions for our collaboration partners, as improved

fuel consumption parameters have been identified in this study to refine

their theoretical models.

Concluding remarks

While we can compute the tracking graphs for the full data including the

cells on the fringes, the resulting graphs are difficult to handle. Dot cur-

rently does not scale gracefully to these large graphs and creating a layout

can take hours or fail all together. Furthermore, assuming a layout is

created the resulting graphs are difficult to interpret even after heavy sim-

plification. Currently the graphs, unlike the segmentations, are computed

for a static threshold. The data structures contain sufficient information to

create graphs efficiently for variable thresholds. However, to view these

graphs would require an interactive layout, which is beyond the current

state of the art. Thus, new paradigms are needed to handle such graphs

potentially involving more sophisticated simplification and hierarchical

representations.

In conclusion, this work nicely exemplified the three main steps of

data analysis and visualization introduced in Chapter 1: abstraction, in-

teraction and analysis. By using hierarchical split trees, our approach en-

abled an important data-reduction (two orders of magnitude) while still

abstracting the relevant information for the representation of the features

of interest of the simulation. This massive data reduction made it pos-

sible to derive a user interface for the interactive exploration of the fea-

tures of the simulation, yielding new visual insights later confirmed by

quantitative analysis. While this approach has been applied to turbulent

combustion simulations, it could be in principle used in any application

where a generalized data subsetting (at interactively defined thresholds)

and tracking is needed.

6.2 Quantitative analysis of molecular interactions

In this section, I present an approach that combines the segmentation ca-

pabilities of the join tree and the Morse-Smale complex for the robust

extraction of subtle features of interest (partly aligned with the gradient

of a field and the level sets of another) in chemical simulations.
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6.2.1 Applicative problem

The chemical properties of a molecular system are mainly governed by the

interactions between the composing atoms. In particular, an interaction

type of special interest is covalent bonding, which describes the sharing

of electrons in between atoms. Covalent bonds have been widely studied

since the early twentieth century (Lew16). They give rise to the chemical

structure of a molecular system, and are deeply investigated in molecu-

lar chemistry (Pau60). When dealing with complex molecular systems, a

second type of interactions governs many chemical phenomena: noncova-

lent interactions. These are responsible for the bonding between several

molecules and the folding of single molecules onto themselves. Examples

of chemical processes driven by such interactions include the bonding be-

tween a protein and a drug, a catalyst and its substrate, or self-assembly

materials. Thus, the understanding of these interactions is necessary for

the interpretation of many biological processes and chemical design tasks

(e.g., pharmaceutics, nano-technology).

In contrast to covalent bonds, noncovalent interactions release much

less energy and are characterized by low electron density values and

only slight value variations. This challenges their extraction and anal-

ysis by solely studying the electron density. Recently, the signed elec-

tron density and the reduced gradient have drawn much attention in

the chemistry community. These scalar quantities are derived from the

electron density and enable a qualitative visualization of the interactions

(CdCCG∗14, JKMS∗10). However, the analysis of these quantities is mainly

done manually (CdCCG∗14, CGJK∗11, JKMS∗10, LCGP∗13). An auto-

mated extraction and characterization of encoded chemical interactions

(in terms of the involved atoms) is still an issue, that we address in this

section.

Interactions in molecular systems

Molecular interactions govern the structure of chemical systems by estab-

lishing attractive and repulsive balances in-between atoms. These interac-

tions vary in strength and type. Here, we provide a brief characterization

and highlight some of their properties. We refer the reader to (Pau60) for

further details. For the purpose of our discussion, one mainly differenti-

ates between two classes of chemical interactions.

A covalent interaction describes a chemical bond between atoms by shar-

ing electrons. Based on electrostatic grounds, one can provide a simple
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picture of the physics behind it. Placing two atoms next to each-other, the

two positively charged nuclei, i.e., the center of the atoms, both attract the

outer negatively charged electrons. If the attraction is strong enough such

that it overcomes the repulsion caused by the positively charged nuclei,

a bond between the atoms is created. The bond represents an energetic

equilibrium in which the electrons are equally attracted by the two nu-

clei. Thus, the two bonded atoms share these electrons. Multiple cova-

lent interactions between atoms result in a system of bonded atoms called

molecule – typically represented with balls (atoms) and sticks (covalent

bonds) (Fig. 6.9(a)).

A noncovalent interaction does not involve the sharing of electrons.

From an electrostatic point of view, they can be understood as weak elec-

trostatic interactions between temporary and permanent partial charges.

While this class of interaction constitutes the driving forces for intra-

molecular folding and inter-molecular bonding, it spans a wide range of

binding energies, which are typically from 1 to 15 kcal/mol and around

one to two orders of magnitude smaller than covalent interactions. Hence,

their extraction and characterization is much more involved. Noncovalent

interactions can be caused by several physical phenomena and we detail

here the most relevant ones:

• Hydrogen bonds: Among these electrostatic interactions, the hydro-

gen bonds deserve special attention due to their ever presence in

biological systems. They link a hydrogen to an electronegative atom

(e.g., oxygen, nitrogen, fluorine, carbon) and occur within the same

molecule or in-between molecules. (dashed green line in Fig. 6.9(a)).

• Van der Waals forces: These attractive forces have a purely quantum

mechanical nature. In particular, the constant movement of electrons

around the nucleus transforms an atom into a fluctuating multipole.

These temporary charges can cause attraction between close oppo-

sitely charged atoms yielding a stable bonding of weak energy. Al-

though the force of an individual van der Waals bond is relatively

weak, the cumulative effect of multiple of them may strongly influ-

ence the global structure of large molecular systems – as shown in

many chemical reactions and protein-ligand interactions.

• Steric repulsion: These repulsive forces are short range interactions

which occur when two atoms approach one another. Intuitively,

they are due to the fact that too many electrons occupy the same
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(a) Molecular

structure of the

1,2-ethanediol

molecule.

Noncovalent bonding

(green) occurs

between the hydrogen

and oxygen.

(b) The ρ-field does

not capture the

noncovalent bond.

The gradient flow

∇ρ (blue arrows)

uniformly covers all

atoms.

(c) The

hydrogen-oxygen

attraction is captured

by ∇ρ̃. The attraction

(blue arrows) closes

a molecular cycle

generating a

repulsion (red

arrows).

(d) The noncovalent

bond is given in s by

an isolated

component (red

surface) highlighting

the interaction site of

the oxygen and

hydrogen atom.

Figure 6.9 – Isosurfaces and gradient behavior (colored arrows) of the electron density

ρ, its derived signed electron density ρ̃, and the reduced gradient s for the 1,2-ethanediol

molecule. Oxygen, carbon, and hydrogen atoms are shown as red, green, and purple

spheres, respectively. Covalent and noncovalent bonds are shown as white sticks and

dashed green lines respectively.

space (Pauli principle). This can be pictured as forces occurring in

regions of space bounded by negatively charged elements, such as

covalent bonds and negatively charged atoms forming molecular cy-

cles (GCCG∗12). The localization of these interactions is of major

importance for chemical design tasks since they indicate regions of

space that cannot receive additional electrons.

Input data

The input of our analysis are two scalar fields derived from the electron

density: the signed electron density and the reduced gradient.

Signed Electron Density In quantum chemistry, electrons behave simul-

taneously as waves and particules, which only allows for a probabilistic

evaluation of their positions. The relative probability that electrons can

be found in a particular location of a space is described by the electron

density ρ : M → R+. Density cusps are expected at the nuclei, the

center of the atoms, whereas charges decrease exponentially away from
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them. Thus, the nuclei dictate the overall behavior of ρ. Weak atomic

interactions are very often occluded and cannot be directly computed or

visualized. For instance, while the ethanediol molecule admits a noncova-

lent bond (dashed green line, Fig. 6.9(b)), this bond is not captured by the

electron density ρ (LCGP∗13). Investigating the flow of ∇ρ in Fig. 6.9(b)

reveals that the flow enters the molecular cycle from the outside and uni-

formly covers all atoms forming the cycle. The circular structure shown

in Fig. 6.9(a) is not captured by the flow while it is crucial for the analy-

sis of attractive and repulsive interactions. A differentiation of these in-

teractions solely based on the density ρ is not possible, in general. To

compensate therefore, a direct investigation of the Hessian Hρ and its

eigenvalues is needed (CGJK∗11). Assuming the eigenvalues λi are given

in increasing order, i.e., λ1 < λ2 < λ3, we observe the following behavior.

In the vicinity of the nuclei all eigenvalues are negative. Away from it,

λ3 becomes positive and varies along the internuclear axis representing

covalent bonds. λ1 and λ2 describe the density variation orthogonal to

this internuclear axis. λ1 represents the influence of the nuclei, and is al-

ways negative away from the nuclei. Contrarily, λ2 can be either positive

or negative depending on the type of interaction. While attractive inter-

actions concentrate electron charge perpendicular to the bond (λ2 ≤ 0),

repulsive interactions cause density depletion (λ2 ≥ 0). Using this local-

ized information, the signed electron density ρ̃ is defined as ρ̃ : M → R

with ρ̃(x) = sign(λ2(x))ρ(x) (CGJK∗11). In contrast to ρ which only

assesses the interaction strength of atoms, the signed electron density ρ̃

additionally enables the differentiation of attracting and repulsive inter-

actions. Fig. 6.9(c) shows an isosurface of the signed electron density for

the ethanediol molecule. In contrast to the electron density, the gradient

∇ρ̃ captures nicely the attraction between the hydrogen and oxygen (red

arrows), which forms a noncovalent bond creating a molecular cycle. This

folded conformation also introduces repulsion in the molecule captured

by ∇ρ̃ (blue arrows).

Reduced Gradient To further reveal weak noncovalent interactions,

bonds, the reduced gradient s : M→ R+ of ρ was introduced (JKMS∗10)

s =
1

2(3π2)1/3
|∇ρ|
ρ4/3 (6.1)

The reduced density gradient s describes the deviation in atomic densi-

ties due to interactions (JKMS∗10). Intuitively, covalent and noncovalent
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interactions both appear in s. In the presence of such interactions, s re-

ports a strong change in its values in regions of space between interacting

atoms. The denominator of s reduces herein the influence of the nuclei

due to their high electron densities. In contrast to the electron density, s

shows large values in regions far from the nuclei. The electron density

exponentially decreases towards zero, and ρ4/3 converges faster to zero

than |∇ρ|. Points at which ∇ρ vanishes become zeros in s and are minima

of s. In contrast to the infinite-behavior, the gradient ∇ρ dominates the

denominator ρ4/3 at those points.

The reduced gradient provides a qualitative visualization of chemical

interactions by considering its isosurfaces chosen at appropriate values

(CdCCG∗14, JKMS∗10). Fig. 6.9(d) shows an isosurface of s for the ethane-

diol molecule. The interaction of the hydrogen and oxygen causes the cre-

ation of a component of isosurface (highlighted in red). The investigation

of such components, which describe regions of space where interactions

occur, is the starting point of our approach. In particular, the topological

analysis of s reveals interaction sites which enables us to focus on locations

of space which are relevant from a chemical perspective.

6.2.2 Algorithm

Feature definition

Bader (Bad94) proposed a theoretical model which relates molecular in-

teractions to the critical points of the electron density (MB07). In partic-

ular, nuclei can be considered as local maxima of the electron density ρ

whereas bond interactions between atoms are represented by separatrices

emanating from 2-saddles and ending in two distinct atoms. Fig. 6.10(a)

shows these features extracted from the Morse-Smale complex of ρ on

the ethane-diol. However, as observed by Lane et al. (LCGP∗13), even

without any topological simplification, ρ exhibits no 2-saddle in between

the upper-left hydrogen and the lower oxygen atoms (cf. dashed line in

Fig. 6.9(a)). Thus, no separatrix connecting these two atoms can be ex-

tracted and no chemical bond is identified between them. However, as

discussed by Lane et al. (LCGP∗13), it is established from experimental

evidence that this molecule exhibits a noncovalent hydrogen bond con-

necting these two atoms (Fig. 6.9(a)). Since ρ̃ and s better emphasize

noncovalent interactions, we can overcome this limitation by transposing

Bader’s model from ρ to the analysis of ρ̃ and s. In particular, we focus on

the following features.
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(a) ρ (b) ρ̃

Figure 6.10 – Critical points (spheres) and separatrices (lines) in the ethanediol molecule

for the considered scalar fields. Red, orange, green and blue spheres represent maxima,

2-saddles, 1-saddles and minima respectively. Red and blue lines represent separatrices

connecting a 2-saddle to maxima and a 1-saddle to minima respectively.

Atoms Near the atoms, the flow of ∇ρ exhibits an attractive behavior

characterized by λ2 < 0. Thus, ρ̃ is negative in the vicinity of the atoms.

Moreover, since the electron population is maximal at the nuclei, |ρ̃| is

also maximal in these locations. Thus atoms are represented in ρ̃ by local

minima. With regard to s, these atoms are also represented by minima of s

since∇ρ vanishes in the atoms. For typical quantum chemical calculations

with Gaussian bases, atoms are characterized by ρ̃ < −0.35 and s = 0.

Bond Paths By transposing Bader’s model to the analysis of ρ̃, a bond-

ing interaction between two atoms is present if there exists a single line

connecting the atoms and which is everywhere tangential to ∇ρ̃. Since

atoms are represented by minima of ρ̃, such a line is represented by two

integral lines emanating from minima. Moreover, the existence of such a

line between two minima implies the existence of a 1-saddle of ρ̃, which

connects the two separatrices emanating from the minima. The latter sad-

dle is called a bond critical point. Note that this saddle can be a merging or

genus-change 1-saddle.
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(a) Isosurface of ρ colored by

the 2nd eigenvalue λ2 of Hρ

(b) Minima and 1-saddles of ρ̃

scale by persistence.

(c) Zoom-in I of (b). (d) Zoom-in I I of (b).

Figure 6.11 – Technical challenges associated with the extraction of molecular interac-

tions from ρ̃ on the furan molecule: beyond low-persistence critical point pairs, ρ̃ also

exhibits high-persistence minimum-saddle (c) and saddle-saddle pairs (d) which occlude

the critical points of interests (b) representing atoms and bond critical points.

Bonding Graph The set of atoms and bond paths in a molecular system

form the Bonding Graph. Each node of this graph represents an atom and

its edges represent all attractive interactions in the system.

Repulsive Bond Cycles Bonds can form cycles in the bonding graph

yielding steric repulsion. Thus, we define a cycle of minimal length in the

bonding graph as a repulsive bond cycle.

Fig. 6.10(b) shows the extraction of the minima and the ascending sep-

aratrices ending in 1-saddles, obtained from the Morse-Smale complex of

ρ̃. In contrast to the topological analysis of ρ (Fig. 6.10(a)), this analysis

reveals a bond path connecting the upper-left hydrogen and the lower oxy-

gen atoms, hence, corroborating experimental observations (LCGP∗13).

Thus, this result further motivates the topological analysis of ρ̃ for nonco-

valent bond extraction. Note that s also captures this interaction site by a

component of its isosurface (Fig. 6.9(d)).
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Technical challenges

Although the Morse-Smale complex of ρ̃ nicely captures covalent and non-

covalent bonds, this comes with a price to pay in terms of topological com-

plexity (Fig. 6.10(b)). This complexity occludes the features of interest and

challenges their direct extraction, as illustrated in Fig. 6.11.

According to our feature definition, atoms can be identified by con-

sidering minima of ρ̃. Bond paths can be identified by extracting from

the Morse-Smale complex of ρ̃ the two descending separatrices emanat-

ing from each 1-saddle. A bond path is considered valid if it connects

two distinct atoms. Note that the robust extraction of the bond paths is

of major importance for the extraction of the remaining features (cova-

lent bonds, noncovalent bonds, Bonding Graph, repulsive bond cycles).

However these features are also the most challenging to isolate, for the

following reasons:

1. Low persistence structures: Critical points are present in the Morse-

Smale complex due to the sampled representation of ρ̃. While spu-

rious 1-saddles can yield false positive bond paths, spurious min-

ima can additionally yield interrupted bond paths by preventing

descending separatrices emanating from a valid bond critical point

to reach the corresponding atoms. Thus, the Morse-Smale com-

plex needs to undergo topological simplification to (i) remove low-

persistence minima and to (ii) connect bond critical points to atoms.

2. Non-atom minima: At the edge of attractive (ρ̃ < 0) and repulsive

(ρ̃ > 0) regions (Fig. 6.11(a)), ρ̃ exhibits high-persistence minima, as

illustrated in Fig. 6.11(c). These minima also need to be discarded

to avoid interrupted bond paths as well as false positives in atom

identification.

3. Non-bonding saddles: As illustrated in Fig. 6.11(d), ρ̃ also includes

high-persistence (genus-change) saddle-saddle critical point pairs.

However, this category of critical point pair may not be removable

through Morse-Smale complex simplification (JP06). Thus, the re-

moval of these outliers challenges existing topological techniques

and motivates the joint analysis of the reduced gradient s.

The above challenges motivate a tailored topological analysis pipeline

described in the following section.
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(a) Interaction sites obtained from the sub-level

set components of the reduced gradient s for three

simplification levels: no simplification (left, 32

sites), p = 0.23 (middle, 14 sites), p = 0.3 (right, 6

sites).

(b) Persistence curve highlighted

with two different simplification

levels (blue and red vertical lines).

Figure 6.12 – Illustration of different simplification levels of the reduced gradient s based

on the persistence p of critical point pairs. Reading the persistence curve from the right to

the left side reveals a first slope (red) at the end of which interaction sites corresponding to

covalent bonds have been simplified. The end of the next slope on the left (p = 0.23, blue)

corresponds to a simplification level where both covalent and noncovalent interaction sites

are maintained.

Interaction sites

To address the third challenge of the previous paragraph, we describe a

pre-processing stage whose purpose is to isolate regions of space contain-

ing 1-saddles of ρ̃ which are relevant bond critical point candidates from

a chemical perspective. Interaction sites can be visualized by considering

the regions of space bounded by the connected components of relevant

isosurfaces of s (CdCCG∗14, JKMS∗10). However, each type of interaction

is visualized by a specific isovalue. The birth of these components happens

at early isovalues for covalent bonds. Contrarily, for noncovalent bonds,

the birth happens at arbitrarily larger isovalues. To extract all interaction

sites in a single procedure, we analyze J (s), the join tree of s.

The reduced gradient s exhibits low values in the vicinity of the nuclei

and larger values away from it. Moreover, as the isovalue increases, new

connected components of isosurfaces appear in regions of spaces where

interactions (covalent and noncovalent bonds) occur. The appareance of

such components are characterized by minima of s. As the isovalue con-

tinues on increasing, the merge of these components occur at 1-saddles of

s. These events are captured by J (s). In particular, each branch of J (s)

which contains a leaf (a minimum) represents a connected region of space

containing a single minimum of s. Therefore, we extract each interaction

site by considering each branch of the join tree which contains a minimum.

Fig. 6.12 (left) shows the interaction sites (bounded by red surfaces)
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extracted from the analysis of J (s). Due to the sampled representation of

s and its numerical evaluation, spurious features are present – in particu-

lar in the vicinity of the atoms. To discard these, we apply a persistence

based simplification of J (s). To select an appropriate simplification level,

we manually inspect the persistence curve of the saddle-minimum pairs

(Fig. 6.12) for the ethanediol molecule. Reading the curve from the right

side (high persistence pairs) to the left (low persistence pairs) reveals a

first slope (red in Fig. 6.12) finishing with a sharp kink at p = 0.3 (red

vertical line). This level corresponds to the removal of the minima repre-

senting covalent bonds. Thus, at this level of simplification, the interaction

sites extracted from J (s) (Fig. 6.12(a), right) only reveal: the prominent

atoms (oxygens and carbons), a larger component which represents the

sub-level set containing all covalent interactions, and an isolated compo-

nent representing a noncovalent interaction. The following slope to the

left (blue) also finishes with a sharp kink at p = 0.23 (vertical blue line).

This point corresponds to a simplification level where the components

representing covalent bonds are maintained (Fig. 6.12(a), middle). This

observation was confirmed in all of our experiments. Thus, we select as

an appropriate simplification level the end of the second slope (from the

right side) on the persistence curve. As illustrated in Fig. 6.12(a) (middle),

each interaction (covalent and noncovalent) is represented by a specific

interaction site. Note that dominant atoms (oxygens and carbons) are also

represented. However, the latter regions typically include no 1-saddle of ρ̃

which enables to discard them in a straightforward manner. Note that at

a technical level, in contrast to the Morse-Smale complex of ρ̃, all saddle-

minimum pairs captured by the Join Tree of s can be simplified, which

enables to overcome the technical challenge introduced by the incomplete

simplification of the Morse-Smale complex of ρ̃.

Bonding graph

Covalent and noncovalent bonds form a subset of the More-Smale com-

plex. We describe how the Morse-Smale complex of ρ̃ can be reduced to

the Bonding Graph representing all atoms and their bonds only.

1. Removal of Low Persistence Structures First, the Morse-Smale com-

plex of ρ̃ needs to be simplified. To find a representative simplification

level, we analyze the persistence p of all minima and saddles. Fig. 6.13(b)

shows such a curve for the ethanediol molecule in logarithmic scaling.
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(a) Minima (blue) and 1-saddles (green) for

three simplification levels: no simplification

(left), p = 0.01 (middle), p = 0.39 (right).

(b) Persistence curve highlighted

with two different simplification

levels (blue and red line).

Figure 6.13 – Illustration of different simplification levels of the signed electron density

ρ̃ based on the persistence p of critical points. In the initial level minima and 1-saddles

representing atoms and bonds are occluded by low-persistence critical points. Simplify-

ing the Morse-Smale complex removes spurious critical point revealing the features of

interest. However, not all minima and 1-saddles represent atoms and bonds even in the

simplified Morse-Smale complex.

The persistence curve exhibits a characteristic behavior. We can make

use of this to guide the manual selection of an appropriate simplification

level. Around 90% of the minima and saddles have a very low persis-

tence (p < 0.01). After the first drop down in this curve, two different

persistence-ranges are apparent. In the first range (0.01 ≤ p ≤ 0.39), the

curve shows an almost constant slope (blue) indicating the transition from

low to high persistent features. Fig. 6.13(a) (middle) shows the minima

and 1-saddles at the simplification level p = 0.01. Most of the spurious

structures are removed at this level, and the critical points representing

atoms and bonds are revealed. However, there exists also minima and

1-saddles which do not represent molecular features. Increasing the per-

sistence threshold now iteratively removes pairs of minima and 1-saddles.

At the beginning of the second range (p = 0.39, red), only the minima

representing the heavy carbon and and oxygen atoms are still present.

The minima representing hydrogens are already removed due to the small

mass of hydrogens. However, 1-saddles which do not represent bonds are

still visible in the interface between attractive and repulsive regions. We

made the above observation in all of our experiments. To guarantee that all

atoms and their even weak bonds are well represented, we select a simpli-

fication level after the first drop down in the persistence curve. However,

the point of first drop down varies depending on the overall structure and

energy of the molecular system.



6.2. Quantitative analysis of molecular interactions 155

2. Removal of Non-Atom Minima As detailed previously, there are min-

ima which do not represent atoms. These are characterized by their loca-

tion at the interface between the attractive and repulsive regions. Thus,

their signed density value needs to be larger than those of the atoms. This

allows a differentiation of the minima, and we select those with ρ̃ > −0.35.

Since those minima can interrupt bond paths, we need to remove them

from the Morse-Smale complex yielding a new connectivity between the

remaining minima and 1-saddles. We follow here the general strategy

for the simplification of the Morse-Smale complex, but restricted to the

selected set of minima. For each minimum, we determine the lowest

saddle in its neighborhood; and put all minima-saddle pairs with their

weight, i.e., the height difference between minimum and saddle, in a pri-

ority queue. This queue is processed in ascending order starting with

the pair with the lowest weight. This pair is removed from the Morse-

Smale complex, which requires a subsequent update of the connectivity

information of the critical points in the Morse-Smale complex. Due to the

new connectivity, the weights of the minimum-saddle pairs also need to

be updated yielding a new lowest minimum-saddle pair. We iteratively

remove the selected minima until all of them are processed. This yields a

Morse-Smale complex in which all minima represent atoms only.

3. Removal of Non-Bonding Saddles Next, only the 1-saddles of ρ̃

which are relevant from a chemical perspective should be considered for

bond path extraction. Thus, we restrict the remainder of the analyis to

the 1-saddles located in each of the interaction sites extracted previously

(Fig. 6.12).

4. Bonding Graph Extraction Each 1-saddle is connected to either one

or two minima. Since bonding only occurs between atoms, we neglect

all 1-saddles which are twice connected to the same minimum. From

the remaining saddles, we collect the 1-saddles Sk and their connected

minima Mk
1 and Mk

2 giving rise to a set of triplets (Mk
1, Mk

2, Sk). It may

happen that they exist two saddles Sk1 and Sk2 which end in the same pair

of minima, i.e., Mk1
1 = Mk2

1 and Mk1
2 = Mk2

2 . However, only one bond

can exist between the same pair of atoms. Considering an evolution of

the isovalue in ρ̃, bonding critical points are given by the earliest contact

of the sub-level set components emanating from the two atoms. Hence,

for each interaction site, we choose the 1-saddle S which minimizes its

ρ̃-value as the bonding saddle representing the bond between M1 and
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(a) (b) (c) (d)

Figure 6.14 – Illustration of the different steps of our analysis algorithm: (a) low-

persistence pairs are cancelled; (b) high-persistence minimum-saddle pairs are removed;

(c) high-persistence saddle-saddle pairs are filtered out based on the interaction site ex-

traction; (d) final bonding graph.

M2. Applying this procedure to all saddles Sk yields the Bonding Graph

G = (N, E) in which all minima represent atoms and each pair of minima

is only connected by a single 1-saddle representing their bonding. The

nodes N of the undirected graph G are given by the minima and bonding

1-saddles, its edges E by the separatrices connecting the saddles to the

minima.

Fig. 6.14 shows the different steps of our pipeline on the ethanediol

molecule and illustrates its ability to isolate the features of interest, despite

the presence of high-persistence and spurious critical points in ρ̃.

Repulsive bond-cycles

Figure 6.15 – Illustration of the re-

pulsive bond-cycle extraction.

A repulsive bond cycle is given as a cycle

of minimal length in the Bonding Graph.

Thus, we need to compute the shortest

path between two bonded atoms by omit-

ting their bond, as illustrated in Fig. 6.15.

To do so, we weight the edges E of the

graph G by the Euclidean distance of the

incident nodes. Note that all the weights

are positive. Let us consider a node rep-

resenting a 1-saddle S ∈ N and its adja-

cent minima M1, M2 ∈ N. The two edges

connecting these three nodes are denoted

by E1, E2 ∈ E. We apply Dijkstra’s algo-

rithm to compute the shortest path P ⊂
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Figure 6.16 – Bonding Graphs of simple molecular systems. Oxygen, nitrogen, carbon,

and hydrogen are shown as red, yellow, green, and purple spheres. Bonding saddles

are depicted as white spheres. The Bonding Graph captures covalent and noncovalent

bondings (white lines).

E \ {E1, E2} between M1 and M2 in G omitting the edges E1 and E2. If it

exists, a molecular repulsive cycle was found. We mark all minima cov-

ered by the shortest path and collect all bonding saddles connecting the

minima. We assign to each of these saddles an identifier indicating that

all of them belong to the same repulsive interaction. E1 Note that several

saddles can describe the same cycle, i.e., all minima covered by two cycles

coincide. In this case, we only keep one representative of this cycle.

6.2.3 Results

This section presents experimental results of our analysis algorithm ob-

tained with a C++ implementation on a computer with an i7 CPU (2.8

GHz) and 16Gb of RAM. We investigate a variety of molecular systems

obtained through quantum chemistry simulation with the Gaussian pro-

gram and represented by regular grid data. In all of experiments, our

analysis took in general a few seconds to compute and at most 8 minutes

for the DNA helix data-set (170× 178× 183).

Validation

Fig. 6.16 shows the bonding graph computed by our approach on a vari-

ety of simple molecular systems. Our analysis indeed reveals the covalent

bonds of these systems. Moreover, it also reveals the noncovalent inter-

actions responsible for the bonding of several dimers. In particular, our

analysis reveals that two hydrogen bonds (noncovalent bonds linking a hy-

drogen to a heavier atom) are involved in the bonding of the Pyridoxine
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Figure 6.17 – Quantitative analysis of attractive interactions in the A-T DNA base

pair. Thanks to the robust extraction of attractive bonds, each type of interaction can

be investigated in the light of several quantum chemistry measures. By restricting the

analysis of these measures to the separatrix representing each bond, our analysis enables

to project these complex 3D informations down to easily readable 1D plots, revealing

distinct characteristic behaviors for covalent bonds (bottom-left, upper-right), hydrogen

bonds (bottom-right) or Van der Waals interactions (upper-left). The bond critical points

are highlighted as dashed lines in the 1D plots.

and Aminopyridine (leftmost, top), while a van der Waals attractive force

bonds the bottom two hydrogen atoms together. Each of these bonding

graphs reveal a covalent and noncovalent bonding structure.

Quantitative Analysis and Visual Exploration

Since our technique allows for a robust extraction of covalent and nonco-

valent interactions, it also enables to enumerate, classify and investigate

such features from a quantitative point of view.

Bond Investigation and Classification In addition to the enumeration

of the bonding interactions, our analysis enables new investigation capa-

bilities on a per interaction basis. In particular, one can further analyze

various quantum chemistry measures for each extracted bond since our

analysis provides a concrete geometrical representation for each interac-

tion. Fig. 6.17 illustrates such an analysis where several quantities (|ρ̃| and

s) were evaluated along the bond paths representing two covalent bonds

(lower left and upper right) and noncovalent bonds (upper left and lower

right). For each interaction, such a procedure enables to project these

complex 3D information down to easily readable 1D plots revealing the

evolution of these measures along the bond path. In particular, these plots

reveal a characteristic behavior for covalent bonds. A high-valued flat

plateau of electron population (|ρ̃|) is located in the middle of the bond.

Moreover, s indicates a dominant minimum in the vicinity of the bond

critical point. In contrast, noncovalent bonds reveal a more subtle elec-
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Figure 6.18 – Repulsive bond cycles of the Pyridoxine-Aminopyridine. Integrating |ρ̃|
along them enables to assess the strength of the steric repulsion, as confirmed visually by

the |ρ̃|-color-coding of ∇ρ̃ (arrows).

tronic structure. In the vicinity of the bonding critical point, this analysis

reveals that a minimum of electron population (|ρ̃|) is achieved at distinct

values for hydrogen bonds (10−1, bottom right) and van der Waals (10−2,

upper left) interactions; which is one to two orders of magnitude lower

than covalent bonds. As proposed by Bader (Bad94), attractive bonds can

be classified according to the |ρ̃|-value of their bonding critical point. We

make use of this property to classify attractive bonds in the remainder.

Steric Repulsion Fig. 6.18 illustrates the extraction of repulsive bond

cycles on the Pyridoxine-Aminopyridine. Steric repulsion is induced by a

closed chain of atoms. As a first approach, we integrate log(|ρ̃|) along each

cycle to assess its strength. This analysis reveals strong steric repulsions

induced by the cycles formed by covalent bonds only (left and right orange

cycles). In contrast, very weak steric repulsion is induced by the bottom

cycle. This difference is caused by the presence of the electrons involved

in covalent interactions and their absence in weak-energy van der Waals

bond (bottom hydrogens). This insight is also confirmed by the |ρ̃|-color-

coding of the numerical streamline integration in ∇ρ̃. s

Complex Molecular Systems Fig. 6.19 shows the extraction of attractive

covalent and noncovalent bonds on a folded β-sheet polipeptide. Our

analysis enables to classify them according to the |ρ̃|-value of their bond

critical points. This classification highlights the noncovalent bonds respon-

sible for the folding of this molecule. While hydrogen bonds (cyan) are in-
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Figure 6.19 – Visual and quantitative exploration of covalent and noncovalent bonds in

the β-sheet polipeptide. The amplitude of the signed electron density (|ρ̃|, color-coded from

blue to red) enables to distinguish covalent bonds (yellow) from hydrogen bonds (cyan)

and van der Waals interactions (dark blue). While the numerical integration of ∇ρ̃ (right

inset) enables to visually distinguish the latter two types of interactions, our combina-

torial pipeline robustly extracts these features to support further quantitative analysis.

In particular, our algorithm reveals the repeating pattern (black frame) of noncovalent

interactions responsible for the folding of this molecule, which decomposes it in unitary

building blocks corresponding to the elementary amino-acids composing the molecule.

(a) Bonding Graph (b) Covalent and

Hydrogen Bonds

(c) Covalent and van

der Waals Bonds

(d) Cycles

Figure 6.20 – Quantitative exploration of the nucleic acid double helix data-set. Our

analysis enables to enumerate and classify noncovalent interactions (Fig. 6.21), yielding

query-based visualizations (b, c) revealing the role of each type of interaction in the heli-

coidal structure of DNA. A multi-scale exploration of the repulsive bond cycles (d) reveals

high repulsions in the center of the helix and weaker repulsion on its outer boundary.

volved in this folding, our analysis additionally reveals that van der Waals

attractions (dark blue) also play a structural role to enforce the stability of

this folded conformation. This distinction is confirmed by the continuous

flow of ∇ρ̃ (right inset), which exhibits the dispersed behavior of van der

Waals attractions. Moreover, as highlighted with the black frame, our anal-

ysis reveals a repeating pattern of noncovalent bonds, which corresponds

to the decomposition of the molecule in its elementary amino-acids.

Fig. 6.20 illustrates an exploration of the molecular interactions within

a portion of a nucleic acid double helix found in DNA. Due to the com-

plexity of this data-set, our algorithm extracts a large number of interac-

tions between the two parts of the helix, highlighted in yellow and red

(Fig. 6.20(a)). To reveal the structural role of these interactions at a global
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Figure 6.21 – Supporting plots for Fig. 6.20. Shown are the number of bonds and cycles

present in the DNA example as a function of |ρ̃|.

level, we perform a quantitative analysis of each of the extracted bonds.

In particular, plotting the number of bonds as a function of |ρ̃| (Fig. 6.21

left) indicates three distinct ascending modes. The first two modes (blue

and green) are separated by a small-scale kink (see inset) while the last

two modes (green and black) are separated by a large-scale kink. As sug-

gested by our initial quantitative analysis on the A-T DNA base (Fig. 6.17),

each portion of the curve (blue, green and black) correspond to a spe-

cific type of interactions: van der Waals, hydrogen bonds and covalent

bonds, respectively. Thus, this curve enables to select thresholds for a

query-based exploration of the noncovalent bonds. In Fig. 6.20(b), van

der Waals attractions were removed while in Fig. 6.20(c) hydrogen-bonds

were filtered out. Covalent bonds appear in red and yellow in these fig-

ures. These visualizations provide two complementary global insights on

the helicoidal structure of this molecular system. In particular, Fig. 6.20(b)

reveals that hydrogen bonds are mostly located in the planes orthogonal

to the helix axis while van der Waals attractions follow the axis-direction.

This confirms that the torsional stiffness of the double helix, which influ-

ences the circularisation of DNA, is mostly governed by hydrogen bond-

ing, whereas the axial stiffness, which characterizes the wrapping proper-

ties of DNA, is mostly governed by weaker van der Waals attractions. A

similar query-based visualization can be carried out regarding the steric

repulsions. Since our analysis enables to quantify the strength of repulsive

cycles (cf. previous paragraph), the evolution of their number can be plot-

ted in function of their strength (Fig. 6.21 right). From this curve, the user

can select relevant intervals (blue, green, red) and have a direct feedback

in the visualization of the corresponding steric repulsions (Fig. 6.20(d)).

This enables a multi-scale exploration of such features, which indicates a

strong repulsion in the center of the base pairs (red cycles on the horizon-

tal steps of the helix) and weaker repulsion on the outer boundary of the

helix (blue cycles).
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Concluding remarks

In this work, we showed that subtle features could be reliably extracted

in molecular systems by combining the segmentation capabilities of the

join tree and the Morse-Smale complex of two scalar fields. While such a

tailored approach enables an interactive exploration of the structure of a

molecular system as well as its quantitative characterization, it also indi-

cates that the joint topological analysis of pairs of scalar fields may yield

more generic analysis algorithms. However, this requires a generalization

of topological analysis to bivariate data, as further discussed in Chapter 8.
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This chapter briefly reviews my contributions to related problems,

where the solution has been derived or inspired from topological

data analysis. In particular, I describe an approach for the geometrical

design of scalar fields with topological guarantees. Such a procedure is

important to certify the solution of a geometrical algorithm. In particular,

it has been instrumental in our Reeb-graph based segmentation frame-

work (Chapter 5) to guarantee the topological consistency of the segmen-

tation upon each editing interaction. The application of this framework to

surface quadrangulation is also further discussed in the present chapter.

Next, in the context of photograph composition for panorama creation,

I show how an analysis of the topology of the layout of images enables

to derive fast and flexible seam computation algorithms. Finally, I de-

scribe an algorithmic framework that enables to assess the accuracy of

implementations of isosurface computation (a fundamental task in data

visualization and analysis) from a topological point of view. This chap-

ter presents parts of the results described in the following journal papers:

(TP12, TDN∗12, TDN∗11, STP12, PST∗15, ENS∗12).
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7.1 Scalar field design with topological guarantees

Many geometry processing problems involve numerically sensitive tasks

such as partial differential equation resolution, gradient field integration,

or scale-space computation. In many cases, the topology of the numerical

solution is a major consideration. In meshing for instance, extraordinary

vertices often correspond to singularities (as discussed in Chapter 5) and

these important constraints must be respected. However, numerical noise

often occurs and can alter the topology of the solution. We illustrate this

issue with the Laplace equation subject to Dirichlet boundary conditions

(previously introduced in Chapter 5). Beyond its ubiquity in geometry

processing, this equation plays an important role in electromagnetism,

astronomy and fluid dynamics. Given a finite set of extrema constraints

D along with corresponding target values, the solution f to this equation

is defined as follows:

f (di) = fdi ∀di ∈ D (7.1)

∆ f (v) = 0 ∀v /∈ D (7.2)

where ∆ stands for a discretization of the Laplacian operator on surfaces.

An important property of this equation is that the Dirichlet constraints D
should be the only extrema of the solution.

However, since the Laplacian is a second-order operator, it is diffi-

cult to discretize for piecewise linear functions. Hence several discretiza-

tion strategies have been proposed (see (WMKG07) for a comprehensive

discussion). Fig. 7.1 shows the solution of this equation for two dis-

cretizations of the operator, obtained by least-squares optimization with

the penalty method (XZCOX09). The combinatorial Laplacian (WMKG07)

(Fig. 7.1(a)) is a straightforward discretization which exhibits robust topo-

logical properties. However, as it is strongly biased by the discretization

of the mesh, it fails at generating smooth level sets. In contrast, the dis-

cretization based on cotangent weights (PP93) produces much smoother

level sets. However, in practice, surface triangulations often include many

sharp triangles. As edge angles get closer to zero, the numerical error

on their tangent evaluation can be arbitrarily amplified when used as the

denominator for the cotangent computation, hence yielding an error of ar-

bitrarily high amplitude in the solution in the vicinity of sharp triangles.

As shown in Fig. 7.1(b), this numerical error generates additional criti-

cal points (with non-zero persistence), which prevents the solution from

conforming to its formal description.
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Figure 7.1 – Solving the Laplace equation with topological guarantees (transparent

spheres are Dirichlet constraints). The combinatorial Laplacian (a) satisfies the topologi-

cal properties of the solution, but it has a poor geometrical accuracy (level lines, top). The

cotangent weight Laplacian (b) provides an improved geometrical approximation (top) but

is numerically sensitive and generates invalid additional singularities (inset zooms). Our

algorithm can be applied as a post-process (c), with no threshold parameter, to remove

these inconsistent critical points. The resolution of the equation took 0.14 s. (surface:

25k vertices), while the combinatorial simplification took 0.02 s. (1 iteration). Our al-

gorithm provides a solution (c) which both benefits from the geometrical approximation

quality of cotangent weights (|| f − g||∞ = 0.12%) and from the topological stability of

the combinatorial Laplacian.

The generalized topological simplification algorithm that I introduced

in Chapter 4 can be used in a straightforward manner to fix these numeri-

cal instabilities by using the Dirichlet constraints as topological constraints

(C0
g and C2

g). In practice, our algorithm is around an order of magnitude

faster than the actual numerical optimization (using CholMod). Thus it

can be used as a post-process with a negligible computation time over-

head. Note that since our algorithm uses no threshold parameter, it can

be used in a robust manner, irrespective of the amplitude of the numer-

ical error. As shown in Fig. 7.1(c), our algorithm automatically removes

topological noise while minimally affecting the function. Therefore, our

approach can be used to generate a solution with both the geometrical

accuracy of the cotangent weight Laplacian and the topological robust-
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Figure 7.2 – In addition to regular subdivision, our interactive quadrangulation frame-

work allows the user to manually edit the connectivity applied to each Reeb chart or to

select a connectivity among geometrically similar quad-meshes (middle). A final stitching

step (right) produces a manifold quad-only mesh.

ness of the combinatorial Laplacian, yielding a solution with topological

guarantees that is exploitable for certified geometry processing.

Note however that due to its combinatorial nature, our algorithm will

locally break the harmonicity of the function in the vicinity of the removed

critical points by flattening the area. This drawback has only a local im-

pact and a small amplitude (in Fig. 7.1(c), || f − g||∞ = 0.12%) and thus

will be acceptable for most applications (like quad-mesh design for ex-

ample). However, it might be a limitation in specific applications where

harmonicity is a critical feature that must be enforced everywhere, like

harmonic parameterization for instance.

Nevertheless, such a mechanism has been instrumental in the devel-

opment of our Reeb-graph based segmentation framework, especially for

the manipulation of critical contours and the design of fractional singular-

ities (which correspond to highly degenerate topological configurations).

Thanks to this post-process procedure, after each solve of the Laplacian

function, spurious critical points were removed with this algorithm, en-

abling to robustly extract Reeb charts with the appropriate topology.

7.2 Interactive surface quadrangulation

As described in Chapter 5, our Reeb graph based segmentation framework

enables to semi-automatically segment a surface into coarse quadrangu-

lar charts, with controlled alignment and extraordinary vertices. Since

Reeb charts are equipped with local harmonic parameterization, a regular

sampling of this parameterization yields quadrangulations of the input
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(a)

(b) (c)

Figure 7.3 – Three-step stitching procedure. First (a), vertices of adjacent Reeb chart

boundaries are greedily matched. Second (b), unmatched vertices are resolved with hole

filling procedure. Last (c), possible triangles are resolved in pairs to produce a quad-only

output.

surface. In the following, I describe more advanced interactive algorithms

that enable to refine the connectivity of the mesh within each Reeb chart.

The connectivity can be manually edited through a set of atomic oper-

ations, or automatically transferred from an existing example. With this

approach, since adjacent Reeb charts can be edited independently, a stitch-

ing procedure is applied in the last step to guarantee a quad-only output,

as described in the following.

Stitching procedure

Given two adjacent Reeb charts along with their own quad connectivity,

our stitching procedure produces a manifold quad-only output, as de-

scribed in Figure 7.3. First, vertices are greedily matched on both sides

of the boundary based on their Euclidean distance. Second, contiguous

segments of unmatched vertices are resolved by inserting series of quads.

If such a segment contains an odd number of vertices, triangles are tem-

porarily inserted and later resolved by inserting quads on the shortest

path between pairs of triangles, as illustrated in Figure 7.3. Optionally, a

last relaxation procedure can be applied to improve the shape of the in-

serted quads. This procedure enables to robustly stitch the connectivities

of each Reeb chart into a manifold quad-only output, while allowing for

drastically different meshing strategies on each Reeb chart, as described

next.
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Figure 7.4 – Connectivity texturing of a challenging geometry (multiple sharp features)

on a purposely coarse segmentation. For a given Reeb chart (left), global subdivisions

reproduce meshing results from isocontouring (top). In contrast, connectivity texturing

maps user designed quadrangulations of the unit square to the parameterized chart (bot-

tom) for improved flexibility and control. Above, we illustrate snapshots of the design

process over time (bottom): in this example, the user triggered a few polychord insertions,

followed by cube subdivisions to capture the feature corners at the top of the shape, and

finally subdivided the texture to obtain the desired sampling density.

Figure 7.5 – Examples of user designed quad meshes generated with our editing frame-

work accompanied by quality statistics (vertex count, extraordinary vertex count, max

difference from the valence-4, average mesh angle and scaled Jacobian).

Connectivty texture editing

Given a Reeb chart, we allow the user to interactively define its quad con-

nectivity by designing connectivity textures: quad connectivities defined in

the planar domain and automatically mapped back to the chart thanks to

its local parameterization, as showcased in Figure 7.4. The user is pro-

vided with a few atomic operations (vertex movement, polychord inser-

tion/deletion, cube-based subdivision, edge flipping, etc.). Thanks to the

local parameterization, each edit is iteratively performed on the surface

directly, restricting vertex motions directly to the surface.

Figure 7.5 shows a few examples generated with connectivity texture

editing coupled with Reeb-graph based segmentation, along with mesh

quality metrics. For all types of edits (Reeb atlas or connectivity texture),

our interactive framework responds in less than half second, allowing for

truly interactive design sessions. To validate the usability of our system,

we asked an artist to design a quad mesh for the Bimba model (Figure 7.7,
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Figure 7.6 – A coarse quadrangulation is extracted from an existing quad-mesh and

parameterized (middle). The face is locally improved by connectivity texturing to better

capture the nose (right) with no impact on the rest of the mesh (insets).

Figure 7.7 – The comparison of our technique against quad meshes from multiple al-

gorithms illustrates our improved control of extraordinary vertices, i.e. location and

valence, as well as element alignment, while producing quality output models for the

Rocker Arm and Bimba models. Extraordinary vertices with a valence greater or less

than four are respectively reported with blue and green spheres. On the Rocker Arm

model, each quadrilateral is color mapped based on the max angle between its normal and

its neighbors’ normals, from yellow (0◦) to dark red (90◦). Notice the alignment of the

extraordinary vertices and the alignment to sharp features.

right) with a standard modeling software (Blender, result achieved in 2

hours and 53 minutes) and our approach (result achieved in 31 minutes).

From a practical point of view, this experience revealed that the semi-

automatic segmentation framework based on the Reeb graph helps users

to apprehend surfaces with complex shapes and several prominent fea-

tures, while connectivity texture editing helps in refining the mesh nearby

small-scale details.

Furthermore, our Reeb chart parameterization strategy coupled with

connectivity texturing enables to improve existing quad-meshes, by locally

refining their connectivity, as illustrated in Figure 7.6.

Figure 7.7 provides further comparisons with results obtained with our

approach and more traditional, automatic techniques (HZM∗08, BZK09,

RVAL09). These results show that meshes with compatible quality metrics

(the same as shown in Figure 7.5) can be obtained with our approach but

with a better feature alignment and extraordinary vertex control.
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Figure 7.8 – Geometry unfolding procedure. From left to right: initial harmonic field

(inset: pole and streamline constraints), Reeb chart parameterization, unfolded normal

map (top) and unfolded conformal factor (bottom). This generic unfolding procedure

enables to reduce the problem of geometry aware cross parameterization to that of picture

registration.

Connectivity texture transfer

In addition to allow for an interactive editing of the connectivity tex-

tures, we also developed an approach for their transfer from existing quad

meshes. This approach relies on a fast algorithm for the automatic cross

parameterization of surfaces of disc or annulus topology.

Given two Reeb charts S1 and S2 with disc topology (a similar strat-

egy is derived for Reeb charts with annulus topology), each of them can

be unfolded to the plane (as illustrated in Figure 7.8) with the strategy

described in Chapter 5, yielding two planar maps φ1 : S1 → D1 ⊂ R2

and φ2 : S2 → D2 ⊂ R2. Each of these will yield some area distortion

λ1 : D1 → R+ and λ2 : D2 → R+, denoting the stretch one needs to apply

to the surface to unfold it to the plane, as illustrated in Figure 7.8 (right,

bottom). By constraining these parameterization to map to a unit square,

our strategy reduces the problem of cross parameterization to that of pic-

ture registration, by considering the picture of the area distortion, that we

call quasiconformal encoding.

Then, to compute a cross map of low-distortion between S1 and S2, one

needs to find an optimal planar map ψ̂∗ : D1 → D2. The corresponding

3D bijection ψ∗ : S1 → S2 can be then directly retrieved by considering

ψ∗ = φ−1
2 ◦ ψ̂∗ ◦ φ1.

In particular, to achieve low-distortion bijections, we consider the fol-
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Figure 7.9 – Variability of the quasiconformal encoding (from top to bottom): random

noise can be registered with the identity, streamline variability (pure isometry) translates

into periodic translation, intrinsic reflective symmetry translates into axial symmetry,

near isometries and pole variability translate into as-rigid-as possible planar maps. In the

center of each row, the optimal canonical cross map found automatically by the solver.
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Figure 7.10 – Examples of connectivity transfer from manually designed quad-meshes

(green) to a scanned geometry (blue).

lowing functional for minimization:

E(ψ̂) =
∫
(u,v)∈D1

(λ1(u, v)− λ2(ψ̂(u, v)))2dudv (7.3)

Intuitively, a minimized energy will correspond to a planar cross map

that maps regions of similar area distortion (and consequently of similar

shapes in 3D).

To restrict the space of candidate planar maps ψ̂, we study the vari-

ability of our quasiconformal encoding. As illustrated in Figure 7.9, the

variability in the placement of the initial streamline for subsequent pa-

rameterization can be compensated by a periodic rotation of the quasicon-

formal encoding (second row). Next, intrinsic reflective symmetry can be

compensated by an axial symmetry of the quasiconformal encoding (third

row). Finally, near isometries can be compensated with low distortion by

extracting the most persistent maxima of λ and using them as constraints

for as-rigid-as-possible planar maps (SMW06) (fourth row). Consequently,

we consider as candidate maps for our optimization procedure composi-

tions of periodic translations, axial symmetries and as-rigid-as-possible

planar maps. Since the latter maps can be expressed with an analytic ex-

pression, we derived an analytic expression of their gradient, allowing to

formulate the gradient of our functional E (Equation 7.3) and to use it in a

fast, parallel, multi-grid gradient descent optimization solver (which took

at most 10 seconds to compute in our experiments).

Figure 7.10 shows typical examples of connectivity transfers obtained

automatically with our algorithm, by cross-mapping manually designed

quad-meshes onto a scanned geometry. In particular, note that the ex-

traordinary vertex layout is nicely preserved and adjusted to the input

geometry. Figure 7.11 shows additional results of local connectivity trans-

fers and final stitching to produce a quad-only manifold output.
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Figure 7.11 – Examples of connectivity transfer and stitching between designed quad

meshes (green) to scanned geometries (blue).

Concluding remarks

In this section, I extended the description of our Reeb-graph based frame-

work for the interactive design of surface quadrangulation. With the

notion of connectivity texture editing, we provided users with intuitive

advanced control for the capture of small scale details. With the notion

of connectivity texture transfer, we enabled users to easily re-use previ-

ously designed connectivity textures. Combining these two algorithms

will hopefully improve the productivity of modeling artists by helping

them rapidly prototype quad-meshes by extending and adapting through

connectivity texture editing already existing meshes.
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7.3 Panorama stitching

The composition of panoramas from a collection of smaller individual im-

ages has recently become a popular application in digital image process-

ing. The composition process is composed of 3 steps, usually executed

independently one after the other: (i) image registration, (ii) seam compu-

tation and (iii) color correction.

The first step (i) registers all the images onto a common domain by

optimizing with Bundle Adjustment the transformation of each image rel-

atively to its neighbors, found through automatic feature point match-

ing. The second step (ii) automatically determines which pixels should

be shown in the final composition for regions where multiple registered

images overlap. The last step (iii) aims at correcting large color varia-

tions across image boundaries due to exposure difference and is usually

achieved by solving a Poisson system on the image gradient.

The second step (seam computation) can be expressed as a minimum

cut problem and is traditionally executed with time-consuming solvers,

such as Graph Cuts (BK04), making this step of the pipeline highly com-

putationally demanding and not conducive to user interactions.

In this work, we address this problem by introducing a new algorithm,

called Panorama Weaving, for the fast automatic seam creation and inter-

active editing. Interestingly, as described further down, the core of the

algorithm relies on an analysis of the topology of the layout of registered

images.

Optimal seams

Given a collection of n panorama images I1, I2, . . . , In and the panorama

P, the optimal seam computation problem can be thought of as finding

a discrete labeling L(p) ∈ (1...n) for all panorama pixels p ∈ P which

minimizes the transition between each image, in order to minimize visual

artifacts in the subsequent color correction. If L(p) = k, this indicates

that the pixel value for location p in the panorama comes from image Ik.

Boundaries between regions of the panorama having a different label L(p)

are called seams.

These transitions can be defined by an energy on the smoothness

Es(p, q) of the labeling of neighboring elements p, q ∈ N, where N is the

set of all neighboring pixels. We would like to minimize the sum of the

energy of all neighbors, E. For the optimal seam computation problem,
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Figure 7.12 – Techniques for automatic seam creation (such as Graph Cuts) may produce

results with non-desirable, yet exactly optimal seams (left). Even when seams are visually

acceptable for the user, moving elements in the scene may cause multiple visually valid

seam configurations (right).

this energy is typically defined as:

E(L) = ∑
p,q∈N

Es(p, q) (7.4)

Several energy functionals Es can be considered for this problem. For

instance, to minimize the transition in pixel values, the following energy

(penalizing pixel variations across the seams) can be considered:

Es(p, q) = ||IL(p)(p)− IL(q)(p)||+ ||IL(p)(q)− IL(q)(q)|| (7.5)

Penalizing gradient variations across the seams can also be considered:

Es(p, q) = ||∇IL(p)(p)−∇IL(q)(p)||+ ||∇IL(p)(q)−∇IL(q)(q)|| (7.6)

Note that L(p) = L(q) implies Es(p, q) = 0. Therefore, only pixel

neighbors separated by a seam intervene in the energy evaluation.

The optimization of this functional (called the min-cut problem) can be

achieved with algorithms such as Graph Cuts, which is probably the most

popular technique so far for seam creation. However, as discussed before,

this algorithm is computationally expensive. Also, at a technical level, it

is not guaranteed to find a global minimum of the functional for multiple

labeling (if multiple images overlap in the panorama). More importantly,

from a practical point of view, even numerically optimal seams may not

produce visually pleasing results, as illustrated in Figure 7.12 (left) where

only half of a person in shown in the final panorama (bottom). Also, even

if the seams can be acceptable for the user (Figure 7.12, right), several

alternative valid seam configurations are possible.

In this work, we address this issue by introducing a fast seam creation

technique that enables user edits at interactive rates.

Min-cut min-path duality

In the specific case of a binary labeling (regions where only two images

overlap, Figure 7.13 left), it has been shown that the min-cut problem is
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Figure 7.13 – Min cut-labeling duality on a two-image arrangement (left). The 4-

neighborhood min-cut solution (right, a) with its dual min-path solution (right, b). The

min-cut labeling is colored in red/blue and the min-path solution is highlighted in red.

equivalent to the min-path problem on the dual graph (Has81). In prac-

tice, for panoramas, this corresponds to a graph where each vertex repre-

sents a four-neighborhood of pixels and an edge connects adjacent four-

neighborhoods sharing two pixels, and is associated with the metric Es

(Figure 7.13, right). Given this metric, such a length minimizing path can

be computed by evaluating the distance field from a corner of the image

intersections (u in Figure 7.13, left) and computing the backward integral

line from the other corner (v in Figure 7.13, left). Therefore, in the case of

pairwise seams, it is possible to compute the optimal seam very efficiently:

the distance field evaluation takes O(nlog(n)) steps (where n is the num-

ber of pixels in the image overlap) and the integral line is computed in

linear time (O(n) steps).

Moreover, this setting is very conducive to user interactions. Given

two corners of image overlaps (u and v in Figure 7.13, left), one can ac-

tually compute two distance fields in parallel: one (noted du) having u as

origin and another one (noted dv) having v as origin. Next, given a point

w of the overlap prescribed by the user, the optimal seam passing through

w can be computed in linear time by computing backward integral lines

from w on du and dv (terminating at u and v). Once this is accomplished,

a new distance field (from w) can be computed in parallel in the back-

ground to support further constraint insertion. In practice, this strategy

enables to explore the space of possible optimal seams given sparse user

constraints at truly interactive rates (with only linear passes with the size

of the overlap).

Therefore, in the case of pairwise seams (binary labels), one can effi-

ciently compute and edit optimal energy seams. In the following, I de-

scribe how to generalize this approach to multiple labels (panorama made

of multiple images).
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Figure 7.14 – A solution to the panorama boundary problem (top left) can be considered

as a network of pairwise boundaries between images (top right). Our adjacency mesh

representation is designed with this property in mind. Nodes correspond to panorama

images, edges correspond to boundaries and branching points (intersections in red) of

pairwise seams correspond to faces of the mesh. Graph Cuts optimization can provide

more complex pixel assignments (bottom) where “islands” of pixels assigned to one image

can be completely bounded by another image. Our approach simplifies the solution by

removing such islands.

Seam network topology

To generalize the approach described in the previous paragraph to panora-

mas made of multiple images, we aim at constructing a proper collection

of pairwise seams, called a seam network. This construction is based on

the observation, illustrated in Figure 7.14 (top left), that a label assign-

ment mostly forms a simple collection of regions separated by pairwise

seams (double arrows in Figure 7.14, top left). Moreover, these pairwise

seams meet in specific configurations (called k-branching points, red circles

in Figure 7.14, top right), where all the k images involved in the meet-

ing pairwise seams overlap. One can depict the overall topology of such

a seam network by considering the dual notion of Adjacency Mesh (Fig-

ure 7.14, top right), where each vertex represents a region of unique label

assignment (white circles), each edge represents a pairwise seam (black

edges) and each k-sided polygon represents a k-branching point. Given

an adjacency mesh, the corresponding seam network can be easily com-

puted by (i) locating the branching point corresponding to each polygon
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Figure 7.15 – Considering the full neighborhood graph of a panorama (left), where an

edge exists if an overlap exists between a pair of images, an initial valid adjacency mesh

(right) can be computed by finding all non-overlapping, maximal cliques in the full graph

then activating and deactivating edges based on the boundary of each clique.

(described further down) and (ii) computing the pairwise seam between

them (corresponding to each edge of the adjacency mesh).

Therefore, to generalize pairwise seams to panoramas made of mul-

tiple images, one needs to derive an algorithm for the automatic compu-

tation of the adjacency mesh of the panorama. In the following, given a

registered set of images, we only assume that 1:

• Each image contributes to a unique simply-connected component of

the final panorama;

• A set of k images where every pair of images overlap contains at

least one pixel where all k images overlap.

Given a set of registered images, the full neighborhood graph is first

constructed (Figure 7.15, left). Each vertex of this graph represents a reg-

istered image and an edge connects two vertices if there exists an overlap

between their registered images. The faces of the adjacency mesh corre-

spond to configurations where k images overlap, allowing for the junction

of k pairwise seams into a k-branching point. Therefore, the faces are

constructed by extracting the maximal cliques in the full neighborhood

graph. Next, the edges of the adjacency mesh are selected as edges of the

full neighborhood graph shared by two faces. Finally, the vertices of the

adjacency mesh are given by these of the full neighborhood graph.

Once the adjacency mesh is computed, branching points need to be ex-

tracted. As illustrated in Figure 7.16, the k boundary overlap-corners of all

the images involved in the face (yellow circles, left) are used as origin for

distance field computations (right). The k branching point is then chosen

as a heuristic as the minimizer of the sum of these k distance fields. Next,
1A follow-up work (STB∗13) describes a generalization of this algorithm that no longer

needs these requirements and that handles arbitrary configurations.
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Figure 7.16 – Pairwise seam endpoints closest to a multi-overlap (a, red) are considered a

branching point. This can be determined by finding a minimum point in the multi-overlap

with respect to min-path distance from the partner endpoints (b).

Figure 7.17 – Importing a seam network from another algorithm. The user is allowed to

import the result generated by Graph Cuts (left) and adjust the seam between the green

and purple regions to unmask a moving person (right). Note that this edit has only a

local effect, and that the rest of the imported network is unaltered.

the pairwise seams for each mesh edge are computed (linking branching

points together or branching points to overlap corners on the boundary

of the panorama). Note that branching point computation as well as pair-

wise seam computation are local operations. Therefore, branching points

are first computed in parallel. Second, pairwise seams are computed in

parallel. Finally, since pairwise seams are computed independently, they

may self-intersect. Such configurations are easily resolved by collapsing

pairs of paths from the intersection to the next branching point.

At this point, the seam network is fully computed and is ready for

interactions as described in the previous paragraph dedicated to pairwise

seams. Moreover, the location of a branching point can be edited with a

similar mechanism while its valence can be edited too by splitting it into

smaller valence branching points (which is easily achieved by subdividing

the corresponding k-sided polygon in the adjacency mesh).

Also note that our interactive algorithm can also be used to edit the

output of other labeling algorithms such as Graph Cuts, as illustrated

in Figure 7.17. Given a labeling of the pixels of the panorama, the al-
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Data-set MP Images PW-P (s.) PW-S (s.) GC-S E. Ratio

Crosswalk 16.7 4 1.3 7.2 369.6 0.995

Fall-5way 30.0 5 2.4 12.1 735.4 1.220

Skating 44.7 6 3.2 16.8 734.0 0.851

Lake 9.4 22 0.5 2.9 337.2 0.503

Graffiti 36.6 10 4.3 19.6 983.7 0.707

Nation 49.1 9 4.6 23.2 1168.7 0.800

Table 7.1 – Performance results comparing Panorama Weaving to Graph Cuts for our

datasets. Panorama Weaving run serially (PW-S) computes solutions quickly. When run

in parallel, runtimes are reduced to just a few seconds. The energy ratio (E. ratio) between

the final seam energy produced by Panorama Weaving and Graph Cuts (PWEnergy / GC

Energy) is shown. For all but one dataset, Weaving produces a lower energy result and

is comparable otherwise. Panorama image sizes are reported in megapixels (MP).

gorithm first extracts the boundaries of the regions. Then, branching

points (boundary intersections) are extracted. Next, each boundary seg-

ment (bounded by two branching points) is identified as a seam and the

connected components of the resulting seam network are identified. To be

compatible with our framework, only the seam networks made of a single

connected component can be imported. Thus we only consider the biggest

connected component of the network and small islands are discarded. Fi-

nally, our seam data-structures are fed with the seam network and the

adjacency mesh is updated if necessary. Since the editing operations do

not cascade globally, a user can edit a problem area locally and maintain

much of the original solution if desired.

Results

In this section, I detail the results in both the creation and editing phases

of our system. All results were obtained on a 3.07 GHz Intel i7 4-core

processor (with Hyperthreading) with 24 GB of memory.

Table 7.1 provides a performance comparison between our approach

and the state-of-the-art technique, Graph Cuts (implementation provided

by the authors, which many consider as the exemplary implementation).

Not having an equally well-established in-core parallel implementation

for Graph Cuts, we first use a serial version of our algorithm (PW-S) for

comparison, yielding speedups of up to two orders of magnitude. Such

speedups are further amplified with the parallel implementation of our

algorithm (PW-P), which shows nearly ideal parallel speedup. More sur-

prisingly, our approach, which can be seen as a heuristic with regard to
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Figure 7.18 – Panorama Weaving on a challenging data-set (Nation, 12848 x 3821, 9 im-

ages) with moving objects during acquisition, registration issues and varying exposure.

Our initial automatic solution (bottom, left) was computed in 4.6 seconds at full resolu-

tion for a result with lower seam energy than Graph Cuts. Additionally, our interactive

system for the user exploration of the seam solution space (bottom, right) easily enables:

(a) the resolution of moving objects, (b) the hiding of registration artifacts (split pole) in

low contrast areas (scooter) or (c) the fix of semantic notions for which automatic decisions

can be unsatisfactory (stoplight colors are inconsistent after the automatic solve). The user

editing session took only a few minutes. (top) the final, color-corrected panorama.

the min cut problem, produces for all but one data-set (Fall-5way) bet-

ter energy seams. This can be explained by the fact that this data-set

has originally a high valence branching point and such a topological con-

straint penalizes the resulting energy (note that this branching point can

be interactively split, resulting in lower energy). For the other examples,

the improvement over Graph Cuts can be explained by the fact that our

approach does not produce isolated islands of label assignments by con-

struction, while these often occur with Graph Cuts (Figure 7.15, bottom),

increasing the resulting energy.

As discussed previously, our approach enables to interactively explore

the space of seam networks with interactive rate responds, given user de-

fined sparse constraints. In particular, the user is offered the possibility

to insert point constraints on seams to bend them over scene objects, to

move branching points and to edit their valence. These capabilities are il-

lustrated in Figure 7.18, which shows a challenging data-set for automatic

techniques, due to registration artifacts, moving objects during acquisition

and exposure variations. As detailed in the lateral in-sets, point constraint

and branching point movement enables to bend seams around moving

objects (a), to hide registration artifacts (b) or to fix semantic notions for

which automatic decisions can be unsatisfactory (c).
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Concluding remarks

In this section, I described an efficient technique for pairwise seam com-

putation and editing for panorama creation. In particular, I showed how

this approach could be generalized to panoramas made of multiple im-

ages by reasoning on the topology of the layout of registered images. Not

only this approach is orders of magnitude faster than the state-of-art, but

it also produces results of higher quality (lower residual energy). In ad-

dition to these contributions for the automatic seam computation, this

approach also provides to the best of our knowledge the first effective ma-

chinery for interactive seam editing. We therefore consider this algorithm

as the reference of the problem of seam creation and editing in panora-

mas. These contributions have been instrumental in the development of

follow-up techniques, such as on-the-fly panorama acquisition and cre-

ation (STB∗13), seamless composition (SGSP15), or large-scale panorama

creation (PST∗15).

7.4 Visualisation verification

Scientific Visualization has become a standard component in scientific

software. However, unlike traditional components of the scientific pipeline

(such as mathematical modeling or numerical simulation), only few re-

search efforts have been devoted to the verification of the accuracy, reli-

ability and robustness of its algorithms. As discussed in Chapter 3, iso-

surfaces are fundamental geometrical objects for the analysis and visual-

ization of scalar data. While an approach has been described to evaluate

the geometrical accuracy of isosurface codes for (ESN∗09), no verification

framework was available to assess their topological accuracy. This prob-

lem is addressed by this work.

As described in Chapter 3, isosurface extraction on PL scalar fields

defined on PL manifolds can be achieved robustly thanks to the proper-

ties of the linear interpolant with barycentric coordinates. However, when

considering regular grids, it is often desirable in practice not to subdi-

vide them into PL manifolds, to reduce the memory footprint. Regarding

piecewise trilinear (PT) scalar fields defined on regular grids, the possible

presence of critical points in the interior of the cells challenges, from a

topological point of view, the robust extraction of isosurfaces with algo-

rithms derived from the celebrated “Marching Cubes” algorithm (LC87).

In this work, we introduced a verification framework composed of sim-
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ple and effective algorithms for the topological verification of isosurfacing

codes processing PT scalar fields defined on regular grids. Note that the

simplicity of a verification algorithm is of major importance since a sim-

ple implementation is less likely to contain bugs. In particular, given a

manufactured solution (a PT scalar field whose topology can be easily

and robustly evaluated by our algorithms), our framework is composed of

three steps:

1. Consistency check: verifying that the output produced by an isosur-

facing code is consistent;

2. Betti number verification: for closed isosurfaces, verifying that the out-

put produced by an isosurfacing code is homemorphic to the manu-

factured level-set;

3. Euler characteristic: for isosurfaces with boundary, verifying that the

output produced by an isosurfacing code has the same Euler charac-

teristic as the manufactured level-set.

Consistency check

Level sets of PT scalar fields for non-critical values are piecewise trilinear

2-manifolds that are approximated in practice by isosurfacing codes as

PL 2-manifolds. Therefore, our framework starts by assessing the consis-

tency of an isosurfacing code by checking if its output is indeed manifold.

This is achieved by checking if the link of any interior vertex is indeed a

closed, connected PL 1-manifold and that the link of any boundary vertex

is indeed an open, connected PL 1-manifold.

In order to stress the consistency test we generate a random scalar field

with values in the interval [−1, 1] and extract the isosurface with isovalue

α = 0 using a given isosurfacing technique, subjecting the resulting trian-

gle mesh to the consistency verification. This process is repeated a large

number of times. If the implementation fails to produce PL-manifolds for

all cases, then the counterexamples provide documented starting points

for debugging. If it passes the tests, we consider the implementation veri-

fied.

Betti number verification for closed isosurfaces

Next, in order to verify that the output surface has indeed the correct

topology, we check if it is homemorphic to a manufactured isosurface by
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Figure 7.19 – The four distinct groups of vertices O, F, E, C (original, face, edge, center)

are depicted as red, blue, green and black spheres (semi-transparent cube: voxel of G).

comparing their Betti numbers. In particular, random scalar fields with

values in the interval [−1, 1] are generated and the isosurface with isovalue

α = 0 is considered. In the following, only closed isosurfaces will be

considered, therefore isosurfaces with boundary are avoided by assigning

the scalar value 1 to every vertex on the boundary of the regular grid.

To robustly evaluate the Betti numbers of that isosurface, we introduce a

simple algorithm derived from Digital Topology.

Let f : G → R be a PT scalar field defined on a n× n× n cubic regular

grid. Consider now the 2n× 2n× 2n regular grid G ′ obtained by refining

G and f ′ : G ′ → R given by the trilinear interpolation of f (therefore, f

and f ′ are identical for each point of G ′). As illustrated in Figure 7.19, the

vertices of G ′ can be classified into four distinct sets, denoted O, F, E, C.

The set O contains the vertices of G ′ that are also vertices of G. F, E and C

contain the vertices of G ′ lying on the center of faces, edges and voxels of

G respectively.

Given a scalar value α, the digital object Oa is the subset of voxels v ∈ Ĝ ′

(where Ĝ ′ is the dual regular grid of G ′, for which each voxel corresponds

to a vertex of G ′) such that at least one of the criteria below is satisfied:

1. v ∈ O and f (v) ≤ α

2. v ∈ F and both neighbors of v in O have scalars less than (or equal

to) α
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3. v ∈ E and at least 4 of 8 neighbors of v in O ∪ F have scalars less

than (or equal to) α

4. v ∈ C and at least 12 of the 26 neighbors of v in O ∪ F ∪ E have

scalars less than (or equal to) α

The description above is called Majority Interpolation (MI) and allows to

compute the voxels that belong to a digital object Oα.

The importance of Oα is three-fold. First, the boundary surface of the

union of the voxels in Oα, denoted ∂Oα and called a digital surface, has

been shown to be a 2-manifold (SLS07). Second, the genus of ∂Oα can be

computed directly with a simple algorithm (CR08). As the connected com-

ponents of Oα can also be easily computed and isolated, one can calculate

the Euler characteristic χ of each connected component of Oα and thus

the Betti numbers β0, β1 and β2 for ∂Oα. Third, given a level set f−1(α)

without boundary of a PT scalar field f : G → R, ∂Oα is homemorphic

to f−1(α) if G contains no ambiguous voxel (a voxel is not ambiguous if

all positive vertices form a single connected component via the positive

edges and all negative vertices form a single connected component via the

negative edges; otherwise it is ambiguous (vGW94), see (ENS∗12) for a

proof). Therefore, given a PT scalar field inducing no ambiguous voxel,

our algorithm computes in a robust and simple manner the Betti numbers

of any closed isosurfaces.

In practice, given a random scalar field, G is refined multiple times,

until it no longer exhibits ambiguous voxels. Next the Betti numbers of the

manufactured isosurface f−1(α) is evaluated with our algorithm. Finally,

the Euler characteristic of the surface produced by the isosurfacing code

under verification is evaluated (Equation 3) and the Betti numbers are

deduced from it and compared with those returned by our algorithm. If

both Betti number evaluations match, the verification succeeds.

Euler characteristic verification for open isosurfaces

In order to cover the case of open isosurfaces, we add a third test in our

verification framework that compares the Euler characteristic of the sur-

face returned by the isosurfacing code under verification with that of a

manufactured isosurface.

In the smooth setting, it is known from Morse theory (Mil63) that the

Euler characteristic of a level set changes in the vicinity of a critical point p.

In particular, if εp is a small neighborhood around p and L−(p) and L+(p)
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Figure 7.20 – Illustration of the stratification of a manifold. The colormap illustrates the

value of each point of the scalar field. Although the field is not everywhere differentiable,

its restriction to each stratum is (exept for 0-strata).

are the subset of the points of ∂εp satisfying f (x) < f (p) and f (x) > f (p)

respectively, then the change in the Euler characteristic, denoted by ∆χ(p),

can be expressed as:

∆χ(p) = χ(L+(p))− χ(L−(p)) (7.7)

In the following, we extend this reasoning to easily evaluate the Eu-

ler characteristic of a manufactured isosurface, with a robust algorithm

for PT scalar fields. Given a random scalar field f taking values in

the interval [−1, 1], cells containing critical points are identified based

on their configuration of positive and negative vertices. Next, for each

of these, the location and value of the critical point is numerically esti-

mated. In particular, given the trilinear interpolant, f can be expressed as:

f (x, y, z) = axyz + bxy + cxz + dyz + ex + f y + gz + h and the location p

of a critical point is given by:

px =
d∆x ±

√
∆x∆y∆z

a∆x

py =
c∆y ±

√
∆x∆y∆z

a∆y
(7.8)

pz =
b∆z ±

√
∆x∆y∆z

a∆z

with ∆x = bc − ae, ∆y = bd − a f , and ∆z = cd − ag. Critical points on

faces of voxels are found by setting x, y or z to either 0 or 1, and solving

the linear equations. The scalar field is regenerated if any degenerate

critical point is detected. Additionally, to avoid numerical instability, it is

also regenerated if any interior critical point lies too close to the border

of a cell. Next the Euler characteristic of a manufactured isosurface is

evaluated with the following approach.

To extend smooth Morse theory to piecewise smooth scalar fields (such

as PT scalar fields), we consider Stratified Morse theory. Intuitively, a

stratification is a partition of a piecewise-smooth manifold such that each
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subset, called a stratum, is either a set of discrete points or has smooth

structure. In the case of regular grids, the stratification we propose will be

formed by four sets (the strata), each one a (possibly disconnected) mani-

fold. The vertex set contains all vertices of the grid. The edge set contains

all edge interiors, the face set contains all face interiors, and the cell set

contains all cube interiors, as illustrated in Figure 7.20. The important

property of the strata is that the restriction of f to each stratum is differ-

entiable (or lack any differential structure, in the case of the vertex-set). In

this setting, one can apply standard Morse theory on each stratum, and

then combines the partial results appropriately.

To determine the Euler characteristic of a manufactured isosurface at

isovalue α, we proceed as follows:

1. Critical points and critical values are identified for each 3-

dimensional and 2-dimensional stratum as described previously

(Equations 7.8). In addition, every point in the vertex set is con-

sidered as critical as well (not all critical points induce topological

changes in level sets in Stratified Morse theory).

2. For each critical point p identified previously, χ(L−(p)) and

χ(L+(p)) are evaluated. Given a critical point p of a d-dimensional

stratum, let Tε(p) be a small neighborhood in the stratum. The

lower tangential link TL−(p) is the set of points of Tε(p) with lower

f values than p. Similarly, let Nε(p) be a small neighborhood of

the (3− d)-dimensional submanifold that is transverse to the stra-

tum and going through p. The lower normal NL−(p) is the set of

points on the boundary of Nε(p) with lower f values than p. Then,

χ(L−(p)) = χ(NL−(p)) + χ(TL−(p)) − χ(NL−(p))χ(TL−(p)). This

evaluation is implemented for each type of stratum as follows:

• 3-dimensional strata: in this case, Nε(p) is 0-dimensional, thus

χ(L−(p)) = χ(TL−(p)) (traditional smooth Morse theory);

• 2-dimensional strata: in this case, Tε(p) is the face q itself and

Nε(p) is the line segment q⊥ orthogonal to q going through p.

Let nl be the number of ends of q⊥ with lower f values than p,

then χ(L−(p)) = 2− nl.

• 1-dimensional strata: these contain no critical point (due to the

PT interpolant).

• 0-dimensional strata: let nl1, nl2 and nl3 be the number of ver-

tices adjacent to p with f values lower than p in each Carte-
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Figure 7.21 – Rates of occurrence of the Marching Cubes configurations. The hori-

zontal axis shows the cases and subcase numbers for each of the 31 Marching Cubes

configurations. The dark bars show the percentage of random fields that fit a particular

configuration. The light bars show the percentage of random fields which fit a particular

configuration and do not violate the assumptions of our manufactured solution.

sian coordinate direction. Then: χ(L−(p)) = nl1 + nl2 + nl3 −
nl1(nl2 + nl3).

χ(L+(p)) is evaluated symmetrically and ∆χ(p) is computed (Equa-

tion 7.7).

3. The Euler characteristic χα of a manufactured isosurface for isovalue

α is then given by:

χα = ∑
p∈Cα

∆χ(p) (7.9)

where Cα is the set of critical points sorted by increasing f values

such that f (p) < α, ∀p ∈ Cα.

Finally, the Euler characteristic of the surface produced by the isosurfacing

code under verification is evaluated (Equation 3). If it equals the evalua-

tion given by the above algorithm, the verification succeeds.

Results

In this section I present experimental results of our framework for the ver-

ification of the topological correctness of several isosurfacing programs,

implementing various algorithms: VtkMc (VTK implementation of the

algorithm described in (MSS94)), Macet (DSS∗08), Afront (SSS06), Mat-

lab, SnapMc (RW08), Mc33 (Che95b) (using the implementation provided

by Lewiner et al. (LLVT03)), DelIso (DL07) and McFlow (SENS10). Note

that only the latter three algorithms (MC33, DelIso and MCFlow) provide

theoretical guarantees about the topology of the output.
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Consistency (%) Betti Numbers (%) Euler characteristic (%)

β0 β1 β2 χ

Afront 0.0 35.9 22.8 35.9 25.5

Matlab 19.7 32.2 18.9 20.5 70.3

VtkMc 0.0 27.6 23.2 27.6 70.7

Macet 0.0 54.3 20.9 54.3 100.0

SnapMc 0.0 45.0 25.4 45.0 72.0

Mc33 0.0 2.4 1.1 2.4 5.4

DelIso 19.1 24.4 0.1 20.0 33.2

McFlow 0.0 0.0 0.0 0.0 0.0

Table 7.2 – Rate of mismatches regarding the consistency (manifold test) and the cor-

rectness (Betti numbers and Euler characteristic) of the isosurfaces produced by the tested

implementations on 1000 randomly generated scalar fields.

Figure 7.22 – Mc33 mismatch example. From left to right: problem in the case 4.1.2,

6.1.2 and 13.5.2 of the Marching Cubes table (ambiguous cases). Each group of three

pictures shows the obtained (left), expected (center) and implicit surfaces (right).

Our tests consists of one thousand random fields generated in a regular

5× 5× 5 grid. Although our methodology may discard certain random

fields (presence of ambiguous cells after a large number of refinements,

presence of critical points that are too close to edges and faces of the grid,

etc), all possible voxel configurations for the trilinear interpolation are still

being considered, as illustrated in Figure 7.21.

Table 7.2 shows the results of our verification framework, in terms of

rate of mismatch (situations where the topological invariants computed

from our verification framework disagree with these of the isosurfacing

technique). This table shows that many implementations generate iso-

surfaces with incorrect number of connected components (β0), incorrect

genus (β1) and incorrect number of boundary components (β2). More de-

tailed investigations revealed missing triangles, duplicated vertices, etc. In

our initial tests, the Macet implementation failed in all consistency tests.

An inspection in the code revealed that boundary cells were not prop-

erly traversed. Once that bug was fixed, this implementation started to

produce PL manifold surfaces and was successful in the consistency test.

In the case of Mc33, more detailed investigations on the failure cases re-

vealed a problem with configurations 4, 6 and 13 of the Marching Cubes

table (ambiguous cases). Figure 7.22 shows the obtained and expected re-
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sults for these configurations. Contacting the author, we found that one

of the mismatches was due to a mistake in the implementation of the con-

figuration 13, a non-obvious detail which is not discussed in the original

publication (Che95b). In the case of McFlow, our verification framework

was applied systematically during its development. Hence all detectable

bugs were addressed, resulting in no mismatches.

Concluding remarks

In this section, I presented a verification framework based on simple al-

gorithms for the evaluation of the topological correctness of isosurfacing

codes. In particular, our verification procedure easily identified bugs in

publicly available isosurfacing codes, including some implementing algo-

rithms providing theoretical guarantees on the topology of the output.

Several examples were discussed where these automatically generated di-

agnoses helped in bug-fixing.

Along with the geometrical accuracy of an isosurfacing code, its topo-

logical correctness is of major importance for segmentation tasks in data

analysis and visualization. For instance, β0 directly corresponds to the

number of extracted regions of interest and its incorrect evaluation can

have drastic implications on the data interpretation in the applications

(such as in medical imaging for instance). Thanks to the simplicity of its

algorithms, we believe our framework to be easily reproducible and less

prone to implementation mistakes than isosurfacing codes themselves.

Therefore, thanks to its simplicity and effectiveness, we consider this ap-

proach as the reference for the problem of the topological verification of

isosurfacing code. Moreover, given the practical importance of topolog-

ical correctness, we believe our discussion of failure cases and bug-fixes

are strong arguments for the usage of our framework during the phase

of developments (as done for the McFlow implementation) of any future

isosurfacing code.
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This chapter presents my vision of the most important challenges that

remain to be addressed in Topological Data Analysis for Scientific

Visualization. In particular, I describe the ongoing evolution of the con-

straints and usages in scientific computing, along with their consequences

on data analysis. Based on this discussion, I present a list of key problems

that I am planning to address in the upcoming years. I also present ten-

tative research directions that I put in the perspective of recently started

and upcoming research projects, for which I am the principal investiga-

tor at Sorbonne Universites UPMC. The relevance of these research direc-

tions will be supported by preliminary results that have been for most of

them recently published (GST14, CGT∗15, KTCG15) and which show in

my opinion great promise for the resolution of the upcoming challenges

of Topological Data Analysis.

193





195

As illustrated throughout this manuscript, Topological Data Analy-

sis has demonstrated over the last two decades its effectiveness, robust-

ness and practical interest for many data abstraction, exploration and

analysis tasks. Moreover, as mentioned at the end of Chapter 3, these

techniques gained a sufficient level of maturity such that several of their

key algorithms are now available through open-source implementations

(Dil07, Tie09, Shi12). This level of maturity is also demonstrated by the

numerous collaborations with domain experts for the resolution of prob-

lems that go well beyond the sole scope of Computer Science, including

molecular chemistry, combustion, cosmology and fluid dynamics for in-

stance. Thus, given this maturity, one can legitimately wonder:

“Is there still any research to be done in this area?”

To answer this question, one needs to observe the ongoing trends

in Scientific Computing. Three-dimensional numerical simulation estab-

lished itself as a necessary tool for knowledge discovery in many fields of

science. It enables to evaluate, improve and analyze theoretical models,

especially when experimental validation is made difficult for financial,

technical or legal reasons. In industry, simulation is ubiquitous in the

modeling process of a product.

Traditionally, such simulations are run on High-Performance Comput-

ing (HPC) resources while their output (typically a scalar field represent-

ing a simulated quantity at a given time-step) is transfered to a remote

work station for post-processing purposes: visualization and analysis.

This overall methodology turns out to be incompatible with the

characteristics of the upcoming generation of super-computers (expected

around 2018) with predicted computing performances at the ExaScale

(1018 FLoating-point Operations Per Second, FLOPS), since:

1. it will come with unprecedented technical challenges that cannot

be addressed by simply extending existing frameworks (Har12) and

which will impose new constraints on data analysis algorithms;

2. it will also enable radically novel simulation usages (DA13) which

will result in novel types of data to analyze.

As described below, put together, these two challenges require to

deeply re-visit the core algorithms of data analysis. This implies a com-

plete reboot of the research effort in Topological Data Analysis, which I

intend to pursue in the upcoming years.
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8.1 Emerging constraints

Current estimations regarding the next generation of super-computers

(Har12) expect an increasing imbalance between predicted data through-

puts (1012 bytes/s (DA13)) and persistent storage (1010 bytes/s) or global

network bandwidths (most HPC users are located off-site). In other words,

data will be produced at significantly higher rates than it can be stored

to disk or transferred through the network. In this scenario, traditional

off-line post-processing is no longer an option given this increasing bot-

tleneck.

Therefore, to simply avoid this bottleneck, it becomes necessary to

move data analysis algorithms as close as possible to their input source

(the numerical simulation algorithms). In particular, to minimize the us-

age of persistent storage, it is necessary that analysis algorithms run on

the same hardware as the simulation and that they run during and in syn-

ergy with the simulation process. This strategy, often called In-situ data

processing, imposes three major constraints, described in the following.

8.1.1 Hardware constraints

Supercomputers are built around hardware architectures that differ from

commodity computers in several ways. To fully exploit these resources,

Topological Data Analysis algorithms need to be adapted to fit the hard-

ware specifications. In particular, a key challenge is to extend them to

parallel computing models, including:

1. Shared-memory parallelism with uniform memory access (multi-

core environments typically found in any recent computing devices,

from handled devices to workstations and supercomputers);

2. Shared-memory parallelism with non-uniform memory access

(multi-processor environment typically found in high-end work-

stations and supercomputers);

3. Distributed memory parallelism (multi-node environments typically

found in supercomputers).

Each of these types of parallelism comes with increasing difficulty re-

garding memory transfer management.

Adapting Topological Data Analysis algorithms to these three types of

parallelisms is a major algorithmic challenge since these approaches are

intrinsically sequential, use only few floating point arithmetic operations
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(they are mostly based on graph traversal sub-routines) and always rely

at some point on a global access to the data (in particular to enable their

global consistency).

Moreover, another major concern to be addressed for the upcoming

generation of supercomputers is energy consumption (Har12). In partic-

ular, one well-accepted way to reduce the energy consumption related to

the execution of a program is to reduce its memory usage and transfer. In

terms of algorithms, this is also a major algorithmic challenge for Topo-

logical Data Analysis, as most of its algorithms are memory bound.

Therefore, to enable Topological Data Analysis for the upcoming gen-

eration of supercomputers, I intend to deeply revisit most of its algorithms

to develop memory-efficient parallel algorithms.

Preliminary results

To initiate this research effort, I first focused on the case of the Contour

Tree and the Reeb graph, in collaboration with Pierre Fortin (assistant pro-

fessor at UPMC and expert in HPC) in the context of Charles Gueunet’s

Master thesis. While several approaches attempted to parallelize the

Contour Tree construction algorithm (PCM03, MDN12, MW13, LPG∗14,

AN15), these techniques only considered the case of a simpler variant (the

join or split tree) or relied on a computation based on monotone paths

(which drastically restricts the usage of the output data structures in ap-

plications, preventing for instance data segmentation features).

For the problem of Contour Tree parallel computation in a shared-

memory context, we introduced a new and simple data-division scheme

to balance the input data-set in between the different threads. In particu-

lar, this strategy makes the stitching of the intermediate results computed

from the different threads into one global structure much easier and more

efficient than previous approaches. Our strategy also directly enables the

parallelization of persistence-driven simplification, a problem which has

not been addressed so far to the best of our knowledge. Our preliminary

results demonstrate virtually linear scalability with the number of cores

for simple scalar fields and we are currently addressing issues related to

non-uniform memory access effects on multi-processor architectures for

more complex scalar fields.

In the future, we plan to extend this kind of data-division approach to

account for non-simply connected domains, hence generalizing our tech-

nique from Contour Trees to Reeb Graphs. Further, I will continue this
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research efforts by revisiting other Topological Analysis Algorithms in the

perspective of shared-memory and distributed parallelism.

8.1.2 Software constraints

In-situ data post-processing could be achieved either in (i) synchronous

or (ii) asynchronous manner. In the first case (i), the data production

process (i.e. the simulation code) is temporarily put on pause to make

the computing resources available to the in-situ post-processing program.

This approach requires intrusive scheduling policies to be implemented in

the simulation code (to observe periodic pauses) and also imposes to store

in memory all of the data that will be required by the post-processing

program. A more flexible and less memory-demanding strategy is the

asynchronous data post-processing (ii), where data is post-processed on-

the-fly as it is produced. Unlike the synchronous mode, this strategy does

not require to store in memory large portions of the generated data and is

transparent in terms of scheduling from the simulation code’s perspective.

While this strategy facilitates the deployment of in-situ post-processing

into existing simulation codes, it shifts the scheduling constraints to the

post-processing program.

In particular, in the asynchronous framework, to optimize the schedul-

ing between data generation and post-processing, one should be able to

impose resource budgets (both in terms of memory and computation time)

on the data-analysis algorithms. For instance, these should be able to pro-

cess data as long as it is maintained in memory and produce a usable

output when it is deleted.

These software management constraints constitute a major algorithmic

shift for Topological Data Analysis, since it requires to develop best-effort

algorithms whereas only exact algorithms have been designed by the com-

munity. In other words, in this setting, one would like to develop Topo-

logical Data Analysis algorithms capable of approximating their output

and refining it progressively as long as the computation time budget has

not expired. Note that this coarse-to-fine strategy is the complete opposite

of current algorithms (which are fine-to-coarse), where the exact solution is

first computed and then progressively simplified with persistent homol-

ogy mechanisms (see Chapter 3). Designing best-effort Topological Data

Analysis algorithms is one of the key problems I will address in the up-

coming years.
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Figure 8.1 – Progressive Contour Tree Computation. A first computation is performed at

the coarsest level (L) with existing algorithms, while new algorithms need to be designed

to efficiently perform only the required updates (dark arrows) to obtain the Contour Tree

of the next hierarchy levels (L + 1, L + 2).

Research directions

A promising research direction to develop best-effort Topological Data

Analysis algorithms is to consider hierarchical data representations, as

illustrated in Figure 8.1 for the Contour Tree in the case of a hierarchy

of 2D regular grids. Then, while existing algorithms can be used for the

coarsest level of the data hierarchy, new algorithms need to be designed

to efficiently update the output data-structure at the next hierarchy levels

by only performing the required updates.

Note that, if one considers a min-max data hierarchy (storing for each

vertex of a resolution the minimum and maximum values of the vertices

it represents at the next resolution), this progressive data computation can

be viewed as an uncertain process, where the current resolution describes

an error-affected representation of the data whose error is reduced along

the data hierarchy.

As further described in the next section, I recently introduced an ap-

proach for the generalization of the Join Tree (a simpler variant of the

Contour Tree) for uncertain scalar fields (GST14). Figure 8.2 illustrates the

computation of this structure for 4 different hierarchy levels (from left to

right: coarsest to finest). In particular, blue and green regions denote re-
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Figure 8.2 – Progressive Join Tree construction illustrated as an uncertain process. The

minima and saddles of the finest resolution of the data (gradient of gray in the background)

are shown with blue and green spheres respectively. For each data-resolution (from left to

right: coarsest to finest) our uncertain topological analysis has been run. The predicted

regions for the appearance of minima and saddles are shown in blue and green respectively.

gions of possible appearance of minima and saddles at the finest hierarchy

level. As showcased in this illustration, the Join Tree not only gets more

accurate along the hierarchy from a topological point of view (number of

critical points), but also from a geometrical point of view with more and

more refined predictions of the locations of the critical points at the finest

level of the hierarchy. Therefore, to accompany best-effort algorithms with

prediction on the accuracy of the output, I intend to extend my uncertain

data processing algorithm (GST14) with update mechanisms to efficiently

progress from a hierarchy level to another.

This research direction is the core topic of Charles Gueunet’s Ph.D. the-

sis, that will start in early 2016 under my supervision in the framework

of a CIFRE industrial partnership with Kitware S.A.S. (the French sub-

sidiary of Kitware Inc.). During this thesis, we will address the problem

of progressive topological abstraction computation with accuracy predic-

tions, starting from the Join Tree and then generalizing to more complex

topological abstractions.

8.1.3 Exploration constraints

My discussion about In-Situ data processing focused so far on the integra-

tion of Topological Data Analysis algorithms in an HPC context, mostly

for data abstraction and analysis purposes, assuming these algorithms to

run in batch-mode, alongside the simulation. Therefore, this discussion

left the question of interactive exploration in an HPC context open.

An accepted strategy to offer interactive exploration capabilities in an

HPC context is in-situ data reduction for a posteriori interactive explo-

ration on a remote computer (or post-mortem exploration). Then, the chal-

lenge consists in efficiently reducing the generated data such that:

• the reduced data has a size that becomes manageable for persistent
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storage or network transfer (hence enabling a posteriori exploration

on a remote computer);

• the reduced data still exhibits precisely the features of interest in the

data.

A first obvious direction to address in-situ data reduction for post-

mortem exploration is data lossy compression.

Another, orthogonal, approach for data reduction consists in anticipat-

ing the possible user interactions and pre-computing in-situ the result of

each interaction. In particular, given a list of parameters that a user can

control in an interactive task, the idea here is to sample this parameter

space and pre-compute in-situ the visual outcome of each parameter com-

bination. For instance, this idea is the core strategy of ParaView Cinema

(Kit14). Given a visualization pipeline for a data-set and its list of param-

eters (camera position, view angle, color map, etc.), this system samples

this parameter space and for each parameter combination generates a cor-

responding 2D rendering. Then the output collection of 2D renderings

(which is orders of magnitude smaller than the actual data) can be inter-

actively explored on a remote computer, with interactions that emulate

changes in camera position, view angle, color map, etc.

While the example of ParaView cinema addresses the actual post-

mortem visualization of the data, it does not address post-mortem in-

teractive feature extraction and exploration. Thus, in the upcoming years,

I would like to extend this strategy to Topological Data Analysis algo-

rithms for interactive feature extraction and exploration tasks. This re-

search problem requires to re-visit each interactive technique based on

topological abstractions and derive the appropriate output data encoding

given the parameters of the interaction.

Preliminary results

As described in Chapter 6, along with LLNL collaborators I already started

to explore this research direction for the interactive post-mortem explo-

ration of features in the context of combustion simulations (BWT∗09,

BWT∗11). In this work, we showed that a concise encoding of the pos-

sible segmentations of the data by the split tree enabled a post-mortem

interactive exploration and tracking of the flames present in the simula-

tion. In the future, I would like to extend this strategy in multiple ways:
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• Extending this approach and the segmentation encoding to only

store on disk the finest segmentation and enable post-mortem pro-

gressive simplification;

• Enriching this strategy with optional lossy reduction by pre-

simplifying the segmentations in-situ up to a user tolerance;

• Enriching this approach with out-of-core capabilities on the client

side, to enable post-mortem exploration even with low-memory

client workstations;

• Extending this approach to other, more complex, topological abstrac-

tions (Contour Tree, Reeb Graph, Morse-Smale complex);

• Specializing this general strategy to specific application scenarios;

• Extending this approach to unstructured meshes.

These research directions constitute the core topic of Maxime Soler’s

Ph.D. thesis, that should start in 2016 under my supervision in the frame-

work of a CIFRE industrial partnership with Total.

8.2 Emerging data types

In addition to the emergence of new algorithmic constraints (previous

section), the current increase of the performance of supercomputers allows

new simulation usages, yielding the emergence of new data types.

As described below, these new data types cannot be handled by cur-

rent analysis algorithms, which also requires to revisit Topological Data

Analysis algorithms to take them into account.

8.2.1 Multivariate data

Given the recent HPC performances, it becomes now possible to model

complex macroscopic processes by jointly simulating multiple physical

phenomena (for instance: joint thermodynamic, computational fluid dy-

namics and material resistance simulations). In this context, a given simu-

lation generates, for a given PL manifoldM, a family of n scalar functions

that represent drastically (and physically) different quantities (tempera-

ture, flow vorticity, material stress, etc.):

f :M→ Rn (8.1)
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This variability leads concretely to scalar fields having drastically dif-

ferent range values and dynamics. The joint analysis of several scalar

fields defined on a common domain is therefore a major challenge that

needs to be addressed to identify and quantify possible geometrical cor-

relations between quantities.

However, traditionally, Topological Data Analysis only deals with the

analysis of one scalar function defined on a single geometry. Therefore, in

this topic, I will extend the concepts of Topological Data Analysis to multi-

variate scalar functions. This effort will be accompanied with the design of

algorithms that are efficient in practice for the construction and simplifi-

cation of these generalized topological abstractions, and their exploitation

in specific application problems.

Preliminary results

In the context of a collaboration with the University of Leeds, we are

currently working on the design of an algorithm with efficient practical

performances for the problem of Reeb space computation (EHP08). This

construction generalizes the notion of Reeb graph to multivariate scalar

functions by tracking connected components of fibers (multivariate analogs

of level-sets). While an algorithm has been described for its approxima-

tion (CD14), no algorithm with efficient practical behavior has been docu-

mented for its exact computation and simplification.

We addressed this problem with a new output-sensitive algorithm for

the exact construction of Reeb spaces of piecewise linear bivariate scalar

fields on tetrahedral meshes:

f :M→ R2 (8.2)

In particular, thanks to its output-sensitive nature, this algorithm is

fast in practice and it can be shown that its computation time require-

ment is equivalent to that of the theoretical algorithm by Edelsbrunner et

al. (EHP08) only in the worst-scenario (random data) and is faster other-

wise. I am currently finishing the implementation of this algorithm along

with simplification capabilities. As Reeb graphs and Contour Trees offered

new analysis and interaction capabilities for scalar fields (see Chapter 3), I

am convinced that Reeb spaces (and in particular our efficient algorithm)

will enable a wide range of analysis methods for bivariate data, hence ini-

tiating a new line of research. Therefore, in the upcoming years, I will

work on the extensions of the applications of the Reeb graph in Scien-
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Figure 8.3 – Isosurfaces (a) and Fiber surfaces (c) of a bivariate field representing chemical

interactions within an ethane-diol molecule ((b): continuous scatter plot, X: electron

density, Y: reduced gradient). While isosurfaces of the electron density capture regions of

influence of atoms ((a): grey), they do not distinguish atom types. Similarly, isosurfaces

of the reduced gradient capture regions of chemical interactions ((a): blue) but do not

distinguish covalent from non-covalent interactions. In contrast, polygons isolating the

main features of the continuous scatter plot (b) yield fiber surfaces (c) distinguishing atom

types (red and grey) as well as interaction types (blue and green).

tific Visualization to the case of bivariate data. In the following, I further

motivate the applicative interest of such analysis capabilities.

In the process of defining our fast algorithm for Reeb space compu-

tation, we needed to introduce a novel construction called Fiber Surfaces,

which are pre-images of PL 1-manifolds through bivariate functions. Sur-

prisingly we discovered that this novel construction was somehow implic-

itly known by the volume rendering community for multi-dimensional

transfer function definition. However, this community could only visual-

ize a volume rendering of these fiber surfaces and no algorithm was doc-

umented to extract them geometrically. We therefore presented a simple

approach to compute fiber surfaces and showed the applicative interests of

such constructions for data segmentation purposes in various application

fields (CGT∗15). For instance, Figures 8.3 and 8.4 demonstrate the superi-

ority of fiber surfaces over isosurfaces for the user-driven segmentation of

simulated or acquired data.

However this first algorithm was slow in practice for large data-sets

and was only approximate, as illustrated in Figure 8.5. Therefore, we in-

troduced a second algorithm for the exact computation of fiber surfaces

as well as several acceleration mechanisms (generalized from isosurface

extraction acceleration) which enabled an interactive exploration of the

space of fiber surfaces (KTCG15). We consider this latter algorithm as

the reference for the problem of efficient and exact fiber surface compu-

tation in bivariate scalar fields and we released a VTK-based open source

implementation of it in the hope of a rapid uptake of this method.
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Figure 8.4 – Fiber surface extraction on an acquired data set (CT-scan). The considered

bivariate data is given by the acquired value (X axis of the continuous scatter plot, left)

and the magnitude of its gradient (Y axis, left). By manually contouring the main features

of the continuous scatter plot (left), the user can easily extract with the corresponding fiber

surfaces the boundary of the regions of interest of the volume (middle: pulp in red, dentin

in blue, enamel in white, boundary between the dentin and the enamel in yellow). Thanks

to our new algorithm, fiber surfaces can also be computed for non-closed polygons (thicker

edges on the left, fiber surfaces in the bottom zoom-in view on the right).

Figure 8.5 – Fiber surface extraction on a bivariate field (electron density and reduced

gradient) representing chemical interactions within an ethane-diol molecule (dark surface

in (a)). Fiber surfaces are defined as pre-images of polygons drawn in range space (i.e.

the continuous scatter plot (b)). The first algorithm for their computation (CGT∗15)

relies on a distance field computation on a rasterization of the range. While increasing

the raster resolution results in more accurate fiber surfaces ((c): 162 , (d): 10242 ), even

for large resolutions, the distance field intrinsically fails at capturing sharp features of

the fiber surface (here polygon bends in the range, black sphere (b)), as showcased in the

zoom-views (bottom) where the corresponding fibers are displayed with black curves. Our

new approach (KTCG15) introduces the first algorithm for the exact computation of fiber

surfaces on tetrahedral meshes. It accurately captures sharp features (e) and enhances

fiber surfaces with polygon-edge segmentation (colors in (b) and (e)) and individual fibers

(e, bottom) to better convey the relation between fiber surfaces and range features.
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As illustrated in Figures 8.3, 8.4 and 8.5, fiber surface extraction cur-

rently requires manual intervention based on the perceived features in the

continuous scatter plot (BW08) of the data. However, as illustrated in the

case of the two oxygen atoms in Figure 8.3 (two red surfaces, right), several

distinct features may exist in 3D for the same location in the continuous

scatter plot (single red curve, middle). To disambiguate these configura-

tions and to further help the user explore the continuous scatter plot, I

plan to investigate in the future the usage of my Reeb space computa-

tion algorithm for the automatic feature segmentation and simplification

in bivariate data. Indeed, the Reeb space is guaranteed by definition to

segment the 3D space into regions where fibers (and fiber surfaces) are

made of a single connected component. Such a contribution would have

an impact on any visualization task dealing with bivariate data, such as

feature extraction or transfer function design. However, to make such a

topological abstraction useful in practice, as it was the case for scalar data,

persistent homology concepts need to be generalized to bivariate data to

allow for efficient simplification algorithms. Thus, in the upcoming years,

based on my ongoing results on Reeb spaces, I plan to generalize Topo-

logical Data Analysis to bivariate data by extending persistent homology

concepts as well as applications of the Reeb graph in visualization to the

bivariate case. In particular, I intend to study the application of these

algorithms in collaboration with domain experts at Sorbonne Universites

UPMC in scientific fields going from computational chemistry to astro-

physics.

8.2.2 Uncertain data

A physical model is often dictated by a number of parameters (initial

conditions, boundary conditions, etc.). Given the recent HPC advances,

the fine sampling of this parameter space becomes feasible (yielding one

simulation output per combination of parameters). This process, called

parameter study, is central to the understanding of the uncertainty that

accompanies any physical process. For instance, it enables to identify pa-

rameter ranges for an efficient and safe functioning of a complex system.

This type of simulation also generates, given a common domain, a family

of n scalar fields, that model an uncertain process:

f :M→ Rn (8.3)

This collection of n scalar fields is often called an ensemble data-set and

each scalar field a member of this ensemble. Alternatively, each scalar field
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can be seen as an observation of an uncertain scalar field, which maps each

point of the domain to a random variable. In this latter context, the data

is typically represented for each vertex of the domain by a probability

density function (estimated for instance by a histogram). Analyzing this

family of scalar fields (ensemble members or observations) as a whole to

identify, extract and understand the conditions of appearance of features

is a major upcoming challenge in visualization and analysis.

For uncertain data, the number n of considered scalar fields is typi-

cally much higher than in the case of multivariate data (previous section).

Moreover, from a theoretical point of view, the topological analysis of

multivariate data seems to have an applicative interest only when the di-

mension of the range is lower than the dimension of the domain (typically

three). For instance, as of n = 3, the Reeb space of a generic multivari-

ate scalar field defined on a PL 3-manifold M is M itself. Thus, for n

values beyond the dimension of the domain, another direction needs to

be considered. Therefore, the topological analysis of multivariate fields

seems of little importance for the processing of uncertain data. Instead, in

this topic, I will address the problem of generalizing the constructions of

Topological Data Analysis to uncertain scalar fields (that map each point

of the domain to a random variable).

Preliminary results

In the context of an exploratory project for which I was the principal inves-

tigator (called “UnTopoVis”, national funding, Digiteo), I introduced the

first non-local, combinatorial characterization of critical points and their

global relation in 2D uncertain scalar fields (GST14). The characterization

is based on the analysis of the support of the probability density func-

tions of the input random variables. Given two scalar fields representing

reliable estimations of the bounds of this support (noted f− : M → R

and f+ :M→ R), based on the observation that their sub-level sets were

point-wise nested, we described sufficient conditions (Figure 8.6) for the

appearance of mandatory minima. This latter construction generalizes the

notion of local minimum from PL scalar fields to uncertain scalar fields:

Definition 65 (Mandatory minimum) A mandatory minimum M is a minimal connected

component C ⊂ M with a minimal interval I ⊂ R such that any realization

field g (a scalar field that maps each vertex to a realization of its random variable)

admits at least one minimum m ∈ C with g(m) ∈ I. C is called the critical

component of M and I its critical interval.
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Figure 8.6 – Sub-levels of the lower ( f−, blue) and upper ( f+, green) bounds of an un-

certain 2D scalar field for increasing isovalues (top to bottom). The sub-level sets of two

realization fields of the uncertain data are shown in grey (left: ga, right: gb). All points in

the blue region have a non-zero probability to get a value lower than the current isovalue,

while all the points in the green region have a probability of 1 to be lower. Therefore, the

appearance of a unique local minimum m of f+ (in green) within a connected component

C of the sub-level set of f− is a sufficient condition for the appearance of a mandatory

minimum, whose critical component is C. Such a configuration indeed implies the ex-

istence of at least one connected component of sub-level set of any realization field g,

included in C and including m (bottom row). Such a component implies the existence of

at least one local minimum of g in C.

Note that this construction nicely generalizes the notions of critical

points and critical values to critical components and critical intervals. The

notions of mandatory maxima, mandatory join saddles and mandatory split

saddles are defined similarly.

Thanks to the specification of the appearance conditions of mandatory

critical points, we described a combinatorial algorithm for their extraction.

This strategy hence identifies spatial regions and function ranges where

critical points have to occur in any realization of the input uncertain data,

as illustrated in Figure 8.7. In other words, these regions form the com-

mon topological denominator to all realizations (or observations) of an

uncertain scalar field: they describe the common topological features that

appear in all of these scalar fields. From an application point of view, this

approach enables to predict the location and the minimum number of vor-

tices for instance in uncertain flow simulations, as illustrated in Figure 8.7.

Our algorithm provides a global pairing scheme for mandatory critical

points which is used to construct mandatory join and split trees. These
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Figure 8.7 – Mandatory critical points of the velocity magnitude of the uncertain Kármán

vortex street. a) Each vertex v is assigned with a histogram hv estimating its probability

density function. The shades of red show the point-wise probability for the isovalue 0.85.

b) The support of hv is visualized by the lower ( f−, light blue) and upper ( f+, dark

blue) bound fields. c) depicts the mandatory critical points (blue: minimum, green: join

saddle, yellow: split saddle, red: maximum), d) illustrates the spatial uncertainty within

the components. e) shows the mandatory join/split tree, and f) and g) the simplified

visualization.

trees enable a visual exploration of the common topological structure of

all possible realizations of the uncertain data. To allow multi-scale vi-

sualization, we introduce a simplification scheme for mandatory critical

point pairs revealing the most dominant features. Our technique is purely

combinatorial and handles parametric distribution models and ensemble

data. It does not depend on any computational parameter and does not

suffer from numerical inaccuracy or global inconsistency. The algorithm

exploits ideas of the established join/split tree computation. It is there-

fore simple to implement, and its time complexity is output-sensitive. Ex-

periments demonstrated the accuracy and usefulness of our method on

synthetic and real-world uncertain data-sets. Thanks to its robustness and

multi-scale nature, we consider this approach as the reference algorithm

for the problem of mandatory critical point extraction in 2D uncertain

scalar fields.

Despite this strong result, this first attempt at extending Topological

Data Analysis to uncertain data raised even more questions than answers.

In particular, despite their strong applicative interest, the topological fea-

tures that are common to all realizations of an uncertain process (i.e. that

have a probability of appearance of 1) only constitute a sub-set of the features

users are interested in. From a theoretical point of view, a natural question

that arise is:

“What about the critical points with a probability of appearance lower than 1?”

This question has strong applicative implications. Often, the phenom-
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Figure 8.8 – Uncertain scalar field describing the velocity field caused by a heat source

(bottom). Our algorithm for mandatory critical point computation extracts a dominant

maximum (in red, rightmost) which describes the cone through which the flow travels

(and attain velocity maxima) for all observations. However, as illustrated on the left with

3 observation fields (1 to 3), the flow describes three distinct regimes (leftward, center and

rightward trajectories) which are not identified and characterized by our approach.

ena under investigation can reveal distinct regimes and it is important

to understand the probability of appearance of these regimes as well as

the conditions (sets of parameters) for their appearance. Figure 8.8 shows

such an example where the uncertain data clearly exhibits three distinct

regimes that are not identified and characterized by our approach.

In the upcoming years, I therefore intend to address the problem of

ensemble data (or uncertain data) topological classification for regime ex-

traction and characterization. As described above, such a research direc-

tion is important because of its applicative context (parameter studies)

where such analysis capabilities are necessary to abstract, interact with

and analyze uncertain data. From a technical perspective, this problem

is highly challenging for several reasons. First, it requires to bridge the

gap between algorithmic techniques coming from different communities

(Topological Data Analysis and Machine Learning). Second, given the

size of the ensemble data-sets to consider, it is likely that such analyses

can only be performed in-situ. Last, it requires to address sub-problems

which have not (or only partially) been addressed by the community. In

particular, to develop relevant models for the topological classification of

ensemble data-sets, I plan to address the following sub-problems:

1. Designing stable and discriminative distance metrics between Topo-

logical Abstractions as well as efficient algorithms for their compu-

tation;
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2. Designing efficient and relevant algorithms for the clustering of

Topological Abstractions given the above distance metrics;

3. Analyzing the parameter space of parameter studies in the light of

the topological clustering of their observations and specializing this

overall strategy to several application scenarios.

I am currently starting this research effort, in particular by investigat-

ing optimal transportation techniques applied to Topological Data Analy-

sis, in the framework of the AVIDO research project, for which I am the

local investigator at Sorbonne Universites UPMC and for which I will hire

an engineer and a post-doctoral researcher. This project brings together

academic researchers (UPMC and INRIA) as well as domain experts in

the framework of an industrial partnership with EDF (the major French

electricity provider) and Kitware S.A.S. to address the problem of the in-

situ analysis of parameter studies. In particular, thanks to its concrete

use-case scenarios, this project will provide a unique environment for the

development and experimentation of my algorithms.
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In this thesis, I summarized my key research results since my Ph.D. de-

fense in 2008. After a concise tutorial and survey on Topological Data

Analysis for Scientific Visualization (Chapter 3), I presented my contribu-

tions to this field, in particular in each of the following topics:

1. Abstraction: In this topic, I presented my algorithmic contributions

to the computation of Topological Abstractions of raw scalar data.

In particular, I described a general algorithm for the topological

simplification of scalar data on surfaces (TP12) and showed that,

when used as a pre-processing step, it could drastically improve

the time performance of topological abstraction computation algo-

rithms. Thanks to its generality, robustness, ease of implementation

and practical performances, we consider this algorithm as the refer-

ence for the problem of topological simplification of scalar data on

surfaces. Next, I presented an efficient algorithm for the computa-

tion of the Reeb graph of scalar data defined on PL 3-manifolds in R3

(TGSP09). This approach described the first practical algorithm for

volumetric meshes, with virtually linear scalability in practice and

up to 3 orders of magnitude speedups with regard to previous work.

Such an algorithm enabled for the first time the generalization of

contour-tree based techniques to general, non simply-connected vol-

umes. We considered this algorithm as the reference for the problem

of Reeb graph computation on volumes until an optimal time com-

plexity algorithm was introduced three years later (Par12).

2. Interaction: In this topic, I presented my algorithmic contributions

for the interactive editing of Topological Abstractions for data explo-

ration and user-driven segmentation tasks. In particular, I described

interactive algorithms based on the Reeb graph for the topological

simplification of surfaces, both on-line (TGSP09) and in an in-situ

213
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context (STK∗09). Moreover, I presented two algorithms for the in-

teractive editing of Topological Abstractions (the Morse-Smale com-

plex (GGL∗14) and the Reeb graph (TDN∗12)) to enable user-driven

topological data segmentation. In particular, these algorithms enable

to incorporate user knowledge in segmentation tasks where features

of interest are aligned with the gradient of the data (Morse-Smale

complex) or with its level sets (Reeb graph).

3. Analysis: In this topic, I presented my contributions in the spe-

cialization of Topological Data Analysis techniques to specific ap-

plication problems in combustion (BWT∗09, BWT∗11) and chemistry

(GABCG∗14). In particular I showed how standard Topological Data

Analysis could be adapted to extract and analyze features of inter-

est in these fields. These two applications demonstrated that thanks

to their robustness and relevance, Topological Data Analysis tech-

niques could address diversified scientific issues well beyond the

sole scope of Computer Science.

4. Related problems: In this topic, I described related problems that

have been addressed with a solution derived or inspired from Topo-

logical Data Analysis for geometry processing tasks (such as scalar

field design with topological guarantees (TP12) or interactive quad-

rangulation design (TDN∗12, TDN∗11)), interactive panorama stitch-

ing (STP12, PST∗13, PST∗15) or isosurface topological verification

(ENS∗12). For two of these problems, we consider the developed

algorithms to be reference solutions (STP12, ENS∗12).

All of these results were obtained in collaboration with several re-

search groups (University of Utah, Lawrence Livermore National Labora-

tory, Lawrence Berkeley National Laboratory, Universidade de Sao Paulo,

New York University, Sorbonne Universites, Clemson University, Univer-

sity of Leeds) as well as students whom I informally or formally advised.

In the process of introducing the key concepts, algorithms and applica-

tions of Topological Data Analysis (through the tutorial Chapter 3 and the

description of my contributions, Chapters 4, 5, 6, and 7), I emphasized the

robustness, time-performance and efficiency of such algorithms for sev-

eral data abstraction, exploration and analysis tasks. I also underlined the

maturity attained by these techniques, as demonstrated by the emergence

of open-source implementations of these algorithms, to which I partially
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contributed. This level of maturity is also demonstrated by the numerous

collaborations with domain experts for the resolution of problems that go

well beyond the sole scope of Computer Science, including combustion,

molecular chemistry, cosmology, and fluid dynamics for instance.

Despite this level of maturity, I described in Chapter 8 the challenges

that I believe to be the most important ones for Topological Data Analysis

in the future. In particular, I discussed how these challenges were greatly

related to the upcoming generation of supercomputers, which will (i) im-

pose new constraints on analysis algorithms and which will (ii) enable the

generation of new data types to analyze. Put together, these two chal-

lenges require to deeply revisit Topological Data Analysis algorithms and

to reboot the research effort made by the community in this area over the

last two decades.

In particular, due to the input-output bandwidth bottleneck, in-situ

data processing will become inevitable. This requires Topological Data

Analysis techniques to adapt to new hardware constraints (massively par-

allel and distributed architectures), new software constraints (with best

effort computations, in order to ease the scheduling between data genera-

tion and post-processing) and exploration constraints (requiring to define

in-situ data reduction algorithms for post-mortem interactive exploration).

For each of these constraints, I described the consequent algorithmic chal-

lenges that I intend to address in the upcoming years.

Furthermore, the computing performances of the next generation of

supercomputers will allow for a systematic usage of parameter studies

or multi-physics simulations. Both of these usages will make emerging

data types much more prominent such as (i) multivariate data and (ii)

uncertain data. Generalizing Topological Data Analysis to these two data

types requires not only a major algorithmic effort but also an important

theoretical investigation about the extension of Morse theory concepts. I

intend to address these challenges in the upcoming years, in particular

in the context of recently started research projects (including industrial

partnerships) for which I am the principal investigator. These projects will

allow me to recruit and train younger researchers to join and participate

to this research effort. As described through Chapter 8, my preliminary

results in this topic (CGT∗15, KTCG15, GST14) raised even more questions

than answers, but still enabled to identify promising research directions

to address these challenges in the future.
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