Topological Data Analysis MVA

Last name: First name:

Duration: 20 minutes.

Figure 1: Simplicial complex \mathcal{K} , made of 6 vertices, 9 edges and 1 triangle.

Un-comment to mask the answers

Question 1: Let \mathcal{K} be the simplicial complex shown in Figure 1. Give the Betti numbers of \mathcal{K} .

Question 2: Let \mathcal{M} be a the triangulation of a 3-manifold, embedded in \mathbb{R}^3 . For every interior 2-simplex $\sigma_2 \in \mathcal{M}$, what is $\beta_0(Lk(\sigma_2))$ equal to?

Question 3: Let \mathcal{K} be a filtered simplicial complex of dimension d: $\emptyset = \mathcal{K}^0 \subset \mathcal{K}^1 \subset \cdots \subset \mathcal{K}^m = \mathcal{K}$, s. t. $\mathcal{K}^{i+1} = \mathcal{K}^i \cup \sigma^{i+1}$ where σ^{i+1} is a simplex of \mathcal{K} . Recall

that, for $i \in \{0, \dots, m\}$ the simplex σ^i is said to be *positive* if it is contained in a (k+1) cycle in K^i where $k+1 = \dim(\sigma^i)$, and *negative otherwise*. Recall also that the Betti numbers of \mathcal{K} can be computed using the following algorithm.

Input: The filtration $\emptyset = \mathcal{K}^0 \subset \mathcal{K}^1 \subset \cdots \subset \mathcal{K}^m = \mathcal{K}$. **Output:** The Betti numbers $\beta_0, \beta_1, \cdots, \beta_d$ of K.

> $\beta_0 = \beta_1 = \dots = \beta_d = 0;$ for i = 1 to m $k = \dim \sigma^i - 1;$ if σ^i is positive then $\beta_{k+1} = \beta_{k+1} + 1;$ else $\beta_k = \beta_k - 1;$ end if; end for; output $(\beta_0, \beta_1, \dots, \beta_d);$

For $k = 0, \dots, d$ let N_d be the number of simplices of dimension k in \mathcal{K} . Show the following equality (equivalent definitions of the Euler characteristic):

$$\sum_{k=0}^{d} (-1)^k N_k = \sum_{k=0}^{d} (-1)^k \beta_k.$$

(Hint: β_k can be expressed as a function of the number of positive simplices of dimension k and of the number of negative simplices of dimension k + 1.)

Question 4: To compute the 1-dimensional persistent homology of a filtered simplicial complex, it is enough to know its 1-skeleton (i.e. the set of its vertices and edges):

a) True

b) False

Question 5: The persistence diagram of the distance function to the unit sphere in \mathbb{R}^3 is given by (using Gudhi notations (*dimension*, (*birth*, *death*)): a) $[(0, (0.0, \infty)), (1, (0.0, 1.0)), (2, (0.0, 1.0))]$

b) $[(0, (0.0, \infty)), (2, (0.0, 1.0))]$

c) $[(0, (0.0, \infty)), (1, (0.0, 1.0))]$

Question 6: Let D_1 and D_2 be the two persistence diagrams defined by:

$$D_1 = [(1, (1.0, 2.0)), (1, (2.0, 4.0)), (1, (3.0, 3.5))]$$
(1)

and

$$D_2 = [(1, (0.5, 1.0)), (1, (1.8, 4.2)), (1, (2.7, 3.5))].$$
(2)

The bottleneck distance between D_1 and D_2 is equal to:

a) 1.0b) 0.3

c) 0.5

Question 7: Let $f : \mathcal{M} \to \mathbb{R}$ be a PL scalar function defined on a closed, orientable PL 2-manifold \mathcal{M} , admitting a *monkey* saddle on the vertex v_s . What are $\beta_0(Lk^-(v_s))$ and $\beta_0(Lk^+(v_s))$ equal to?

Question 8: Let $f : \mathcal{M} \to \mathbb{R}$ be a PL *Morse* function defined on a closed, orientable PL 2-manifold \mathcal{M} of genus 5, such that f admits only 1 minimum and 2 maxima. What is the number of loops of the Reeb graph $\mathcal{R}(f)$ of f?

Question 9: Let $\hat{f} : \mathcal{M}^0 \to \mathbb{R}$ be the scalar field evaluated on the vertices of a PL 2-manifold \mathcal{M} and represented in Figure 2. Construct a valid discrete gradient field for this example and draw it on Figure 2 (use different representations for vertex-edge and edge-triangle discrete vectors).

Question 10: Enumerate the critical vertices, edges and triangles for the previous question. Describe a perturbation procedure for the removal of the critical triangle.

Figure 2: PL 2-manifold \mathcal{M} made of 12 vertices, 23 edges and 12 triangles. The function $\hat{f} : \mathcal{M}^0 \to \mathbb{R}$ evaluated on the vertices of \mathcal{M} is represented by a number in each vertex.