Topological Data Analysis MVA

Last name: First name:

Duration: 30 minutes.

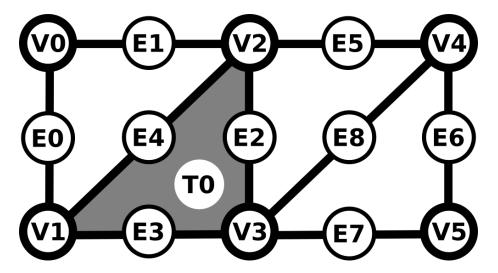


Figure 1: Simplicial complex K, made of 6 vertices, 9 edges and 1 triangle.

Question 1: Let \mathcal{K} be the simplicial complex shown in Figure 1. Give the Betti numbers of \mathcal{K} .

- a) $\beta_0 = 1$, $\beta_1 = 3$, $\beta_2 = 1$, $\beta_i = 0$, $\forall i > 2$.
- b) $\beta_0 = 1$, $\beta_1 = 3$, $\beta_i = 0$, $\forall i > 1$.
- c) $\beta_0 = 1, \beta_1 = 5, \beta_i = 0, \forall i > 1.$

Question 2: Let \mathcal{M} be the triangulation of a 3-manifold embedded in \mathbb{R}^3 . For every interior 2-simplex $\sigma_2 \in \mathcal{M}$, what is $\beta_0(Lk(\sigma_2))$ equal to?

- a) $\beta_0(Lk(\sigma_2))=0$
- b) $\beta_0(Lk(\sigma_2)) = 1$
- c) $\beta_0(Lk(\sigma_2)) = 2$

Question 3: Let $f: \mathcal{M} \to \mathbb{R}$ be a piecewise linear (PL) scalar function defined on a closed, orientable PL 2-manifold \mathcal{M} , admitting a *monkey* saddle on the vertex v_s . What are $\beta_0(Lk^-(v_s))$ and $\beta_0(Lk^+(v_s))$ equal to?

- a) $\beta_0(Lk^-(v_s)) \ge 3$ and $\beta_0(Lk^+(v_s)) \ge 3$
- b) $\beta_0(Lk^-(v_s)) = 2$ and $\beta_0(Lk^+(v_s)) = 2$
- c) $\beta_0(Lk^-(v_s)) = 1$ and $\beta_0(Lk^+(v_s)) = 1$

Question 4: Let $f: \mathcal{M} \to \mathbb{R}$ be a PL *Morse* function defined on a closed, orientable PL 2-manifold \mathcal{M} of genus 5. What is the number of loops of the

Reeb graph $\mathcal{R}(f)$ of f?

- a) 10
- b) 5
- c) 1

Question 5: In Discrete Morse Theory, given a discrete gradient field F defined on a PL d-manifold \mathcal{M} , what is the dimension of the simplices on which local maxima can occur?

- a) 0
- b) d/2
- c) d

Question 6: To compute the 1-dimensional persistent homology of a 2-dimensional simplicial complex, it is enough to know its 1-dimensional skeleton.

- a) True
- b) False

Question 7: Let D_1 and D_2 be the two persistence diagrams defined by:

$$D_1 = [(1, (1.0, 2.0)), (1, (2.0, 4.0)), (1, (3.0, 3.5))]$$
(1)

and

$$D_2 = [(1, (1.8, 4.2)), (1, (2.7, 3.5))]. \tag{2}$$

The bottleneck distance between D_1 and D_2 is equal to:

- a) 0.2
- b) 0.3
- c) 0.5
- d) 1.0

Question 8: What is the dimension of the Vietoris-Rips complex of radius r=2 built on top of the 4 vertices (0,0),(1,0),(1,1),(0,1) of the unit square in the plane \mathbb{R}^2 ?

- a) 1
- b) 2
- c) 3
- d) 4

Question 9: The 2-dimensional unit sphere \mathbb{S}^2 in \mathbb{R}^3 is not homeomorphic to the 2-dimensional torus \mathbb{T}^2 (cartesian product of 2 unit circles $\mathbb{S}^1 \times \mathbb{S}^1$ because:

- a) $\beta_0(\mathbb{S}^2) \neq \beta_0(\mathbb{T}^2)$ b) $\beta_1(\mathbb{S}^2) \neq \beta_1(\mathbb{T}^2)$ c) $\beta_2(\mathbb{S}^2) \neq \beta_2(\mathbb{T}^2)$ d) $\beta_3(\mathbb{S}^2) \neq \beta_3(\mathbb{T}^2)$

Question 10: Given a data set of 1,000,000 of points in \mathbb{R}^3 , is it realistic to compute the persistent homology of the Vietoris-Rips filtration built on top of this data set?

- a) Yes
- b) No. In that case, propose a possible solution to overcome the problem.